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Abstract—Recent advances in deep learning suggest that 
we need to maximize and minimize two different kinds of 
information simultaneously. The Information Max-Min 
(IMM) method has been used in deep learning, reinforcement 
learning, and maximum entropy control. Shannon's 
information rate-distortion function is the theoretical basis of 
Minimizing Mutual Information (MMI) and data 
compression, but it is not enough to solve the IMM problem. 
The author has proposed the semantic information G theory 
(i.e., Shannon-Lu theory), including the semantic information 
G measure and the information rate fidelity function R(G) (R 
is the MMI for the given G of semantic mutual information). 
The parameter solution of the R(G) function provides a 
general method to improve the information efficiency, G/R. 
This paper briefly introduces the semantic information G 
measure and the parametric solution of the R(G) function. 
Two examples reveal that the parametric solution can help us 
optimize range control with tradeoff between the 
purposiveness (i.e., the semantic mutual information) and the 
information efficiency. It seems that the R(G) function can 
serve as the theoretical basis of IMM methods, but we still 
need further research in combination with deep learning, 
reinforcement learning, and constraint control. 

Keywords—minimum mutual information, maximum 
entropy control, semantic information measure, information 
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I. INTRODUCTION  

The recent advances in deep learning, especially the 
success of AutoEncoders [1], [2], remind us that we need 
to minimize Shannon's mutual information [3], [4], [5], [6] 
while maximizing likelihood or estimated mutual 
information [7], [8]. Therefore, some researchers 
emphasize that intelligence lies in data compression [9], 
[10]. Information Theoretic Regularization (ITR) [11] is a 
typical Information Max-Min (IMM) method. It has been 
adopted in deep learning [11] and reinforcement learning 
[12], obtaining good results. ITR uses the difference 
between two kinds of mutual information as the objective 
function and minimizes it with the variational method. 

IMM is related to the rate distortion theory Shannon 
initiated [13], [14] and the maximum entropy theory Jaynes 
proposed [15]. Besides maximum entropy control, people 
have also proposed minimum entropy [16], [17] and Max-
Min entropy control [18]. These are all related to IMM. 

However, the rate-distortion theory is insufficient 
because we also need to maximize some kind of mutual 

information or minimize some sort of entropy. Therefore, 
we need a new or updated theory for IMM methods.  

I proposed the semantic information G measure 30 
years ago [19], [20] (G means the generalization of 
Shannon's information theory) and then extended the 
information rate distortion function R(D) to the 
information rate fidelity function R(G) [21], [22] (G is the 
lower limit of semantic mutual information). This theory is 
called the semantic information G theory or Shannon-Lu 
theory. In the past decade, I have applied the G theory to 
multilabel classification, maximum mutual information 
classification, mixed models, and Bayesian confirmation 
[4], [5], [23]. I have also used the G measure to explain and 
generalize the maximum entropy method [24]. An 
important conclusion is that the semantic channel matching 
with the Shannon channel can maximize semantic mutual 
information, and the Shannon channel matching with the 
semantic channel can minimize Shannon's mutual 
information or maximize information efficiency G/R. The 
G theory might become the fundamental theory supporting 
IMM methods. 

Ranges considered in this article are fuzzy and can be 
represented by (fuzzy) truth functions or membership 
functions. Range control also includes error control 
because the truth function may be equal to exp[- d(x, y)] 
[5], [24], where d(x, y) is a distortion function.. 

This paper aims at 1) demonstrating that the G measure 
can also be used to evaluate the purposiveness of control 
results and the semantic information of imperatives; 2) 
pointing out that semantic communication has an 
information efficiency issue, just like that energy 
conversion has a working efficiency issue; 3) showing that 
using the R(G) function can improve communication 
efficiencies; 4) simplifying IMM methods. 

The main contributions of this article are: 1) 
demonstrating how to use the R(G) function to optimize 
maximum entropy control with fuzzy ranges as goals. 2) 
using the R(G) function's parameter solutions to resolve the 
problem with the tradeoff between maximizing the 
purposiveness and maximizing the information efficiency. 

II. THE SEMANTIC INFORMATION G THEORY: AN OUTLINE 

A. The P-T Probability Framework 

The semantic information G theory is based on my 
proposed P-T probability framework [4], [23]. This 



framework includes two types of probabilities: the 
statistical denoted by P and the logical by T. We define: 

1) The yj is a label or a hypothesis; yj(xi) is a proposition. 
The θj is a fuzzy subset of universe U; elements in θj make 
yj true. We have yj(x) = "x ϵ θj". The θj also means a model 
or a group of model parameters.  

2) A probability defined with "=", such as P(yj)= 
P(Y=yj), is statistical; a probability defined with "ϵ", such 
as P(X ϵ θj), is logical. To distinguish them, we define 
T(yj)=T(θj)=P(X ϵ θj) as the logical probability of yj. 

3) T(yj|x)=T(θj|x)=P(X ϵ θj|X=x) ϵ [0, 1] is the truth 
function of yj and the membership function mθj(x) of θj.  

The logical probability of a hypothesis yj may be 
different from its statistical probability. For example, a 
tautology's logical probability is 1, whereas its statistical 
probability is almost 0. We have P(y1) + P(y2) + … + 
P(yn)=1, but there may be T(y1) + T(y2) + … + T(yn) > 1. 

A semantic channel consists of a group of truth 
functions: T(y|x): T(θj|x), j = 1, 2, …, m, as well as a 
Shannon channel consists of a group of transition 
probability functions: P(yj|x), j=1, 2, …, n. According to 
the above definition, we have: 
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i
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We can put T(θj|x) and P(x) into a Bayes' formula to 
obtain a likelihood function: 
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I call (2) the semantic Bayes formula. Since the maximum 
of T(y|x) is 1, from P(x) and P(x|θj), we obtain: 
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B. The Semantic Information G Measure 

 The (amount of) semantic information conveyed by yj 
about xi is defined with log-normalized-likelihood:  
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The above formula is illustrated in Fig. 1. We call I(xi; 
θj) or its average the semantic information G measure. Fig. 
1 indicates that the less the logical probability is, the more 
information there is; the larger the deviation is, the less 
information there is; a wrong hypothesis conveys negative 
information. These conclusions conform to Popper's 
thoughts [25, p. 294]. I(xi; θj) is also explained as fidelity 
(or verisimilitude [25, p. 309]) between yj and xi. 

We call I(xi; θj) or its average the semantic information 
G measure. Fig. 1 indicates that the less the logical 
probability is, the more information there is; the larger the 
deviation is, the less information there is; a wrong 

hypothesis conveys negative information. These 
conclusions conform to Popper's thoughts [25, p. 294]. I(xi; 
θj) is also explained as fidelity (or verisimilitude [25, p. 
309]) between yj and xi. 

 
Fig. 1. Semantic information yj conveys about xi decreases with 
the deviation or distortion increasing.  

Average semantic information for different x is: 
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where P(x|yj) is the sampling distribution. It is easy to 
prove I(X; θj) ≤ I(X; yj) and that the maximum semantic 
information criterion is equivalent to the minimum cross 
entropy and the maximum likelihood criterions [4]. 

When the sample is enormous so that P(x|yj) is smooth, 
we may let P(x|θj) = P(x|yj) or T(θj|x) ∝ P(yj|x) to obtain 
the optimized truth function: 
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If P(x|yj) is unsmooth, we may derive a smooth T*(θj|x) 
with parameters by using: 
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By averaging I(X; θj) for different y, we obtain semantic 
mutual information: 
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When we fix the Shannon channel and let the semantic 
channel match the Shannon channel, i.e., let P(x|θj) = P(x|yj) 
or T(θj|x)∝P(yj|x) for every j, I(X; Yθ) reaches its maximum, 



Shannon's mutual information I(X; Y). If we fix the 
semantic channel T(θj|x) (j=1,2, …) and let the Shannon 
channel match the semantic channel, i.e., let P(x|yj) = P(x|θj) 
or P(yj|x) ∝ T(θj|x) as possible for every j, we can minimize 
I(X; Y) or maximize information efficiency I(X; Yθ)/I(X; Y).  

We define the relationship between the truth function 
and the distortion function with: 

d(x, y) = log[1/T(y|x)] or T(y|x) = exp[−d(x, y)], (9) 

where we treat log and exp as a pair of function and anti-
function. Letting d(x, yj) = (x − xj)2 / (2σj

2), we derive: 
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where  d  is the average distortion, and Imax is H(Yθ).  

I(X; Yθ) is like regularized squares. Therefore, we can 
treat the maximum semantic information criterion as a 
special Regularized Least Squares (RLS) criterion. 

C. The Rate Fidelity Function R(G) 

If we change the distortion limit d D  for the R(D) 
into I(X; Yϴ) ≥ G, then R(D) becomes the information rate 
fidelity function R(G) [4], [21]. In this case, we replace dij 
= d(xi, yj) with Iij = I(xi; θj). Following the derivation of R(D) 
[14, p. 31], we obtain the parameterized solution [24]:  
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To obtain reasonable P(y) and P(y|x), we need 
iterations by using (12) and (13): 

( ) ( ) ( | ).j i j i
i

P y P x P y x    (13) 

as we do for the R(D) function [26, p. 326].  

The shape of any R(G) function is a bowl-like curve 
with the second derivative > 0, as shown in Fig. 2. 

For the R(G) function, s= dR/dG. When s = 1, R is equal 
to G. G/R indicates the optimized information efficiency. 
The R(G) function has been applied to image compression 
according to visual discrimination [22], semantic 
compression [24], and the EM algorithm convergence 
proof [4], [27]. 

 
Fig. 2. The information rate fidelity function R(G) for binary 
communication. Any R(G) function has a point where s=1 and R 
= G. For given R, there are two anti-functions G-(R) and G+(R). 

It is worth noting that for given the semantic channel 
T(y|x), letting P(yj|x) ∝ T(yj|x) or P(x|yj) = P(x|θj) does not 
maximize G, but the information efficiency G/R. We can 
maximize both information by (12) with s→∞.  

We can also replace average distortion d  with fuzzy 
entropy H(Yθ|X) to obtain the rate-truth function R(Θ) [24]. 
R(G) is more suitable than R(D) and R(Θ) when 
information is more important than truth.  

For given Y=yj, the R(G) function is also meaningful. 
In this case, R is the lower limit of I(X; yj) for given G = 
I(X; θj); there is no iteration for P(y). 

III. PURPOSIVE INFORMATION AND OPTIMIZATION 

A. Purposive Information 

In my previous studies, the G measure is used to 
measure the information of labels, predictions, and 
descriptions. We may call it predictive information 
because a description can be treated as a special case of a 
prediction that accords with the fact. Measuring predictive 
information requires factual tests. For example, we need to 
use P(x|yj) to test P(x|θj) for I(X; θj). 

We can treat an imperative as a control instruction and 
need information about whether the control result accords 
with the control goal. We call this information purposive 
information. The more accordant the result is, the more 
information there is. The G measure can also be used to 
measure the purposive information. 

A truth function can represent a control goal. There are 
some control goals: "The grain yields are close to or more 
than 5,000 kg/ha", "The death ages of people had better 
surpass 80 years old", "The cruising distances of electric 
vehicles had better reach 800 kilometers", and "The error of 
trains' arrival time should be less than one minute."  

We can use the semantic average information formula 
to measure purposive information: 
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where θj is a fuzzy set, which means that the control goal is 
a fuzzy range. The yj in (5) becomes aj here, indicating the 
action taken for the control goal yj.  

 For multi-goal control, the mutual information is 
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where A is a random variable taking a value a or aj. 

B. Optimizing Purposive Information 

Althoug semantic information formula for imperatives 
is the same as that for predictive (or descriptive) sentences, 
the optimization methods are different (see Fig. 3). For 
predictive sentences, where the fact is fixed, we hope that 
the predicted range T(θj|x) is consistent with the fact， i.e.， 
P(x|θj)=P(x|yj), maximizing I(X; θj). For imperatives or 
range control, we hope that the fact or control result 
accords with the goal, that is, P(x|θj)=P(x|yj) or P(aj|x) ∝ 
T(θj|x), minimizing I(X; aj) or information efficiency G/R. 

For multi-goals, we minimize the objective function: 

f=I(X; A)–sI(X; A/θ).   (16)  

 

Fig. 3 The ways of optimizing two kinds of semantic information 
are different. For predictive information, we hope P(x|θj) is close 
to P(x|yj) (see the white arrow), whereas for purposive information, 
we hope P(x|aj) is close to P(x|θj) (see the black arrow).  

When the actual distribution P(x|aj) approaches P(x|θj), 
G/R reaches its maximum, 1. To further increase I (X; aj/θj), 
we use (12) and (13), replacing yj with aj. It is worth noting 
that the many distributions of P(x|aj) maximize I(X; aj/θj), 
but I(X; aj) is the least as P(x|aj) = P(x|θj, s). 

IV. RESULTS 

A. Single-goal Optimization for Information and Efficiency 

I used the control of adult death ages as an example (see 
(Fig. 4). Assume the probability distribution P(x) of adults' 
mortality is normal with μ=70 and σ=10, without the 
control. The truth function as the goal is 
T(θj|x)=1/[1+exp[–0.8(x–80)]. The task is to select an 
action (a medical policy) leading to a result P(x|aj) that 
maximizes I(X; aj/θj) with less I(X; aj). 

 

Fig. 4. Adult mortality ages’ control. T(θj|x) represents the 
goal; P(x|θj) = P(x|θj, s=1) is for G = R, and P(x|θj, s = 20) 
makes G close to its maximum.    

For this example, R denotes the lower limit of I(X; aj) 
for given G=I(X; aj/θj). We obtained R(G) with s by using 
(12), as shown in Fig. 5.  

 

Fig. 5. Two R(G) functions: R(G) was produced by using 
P(x|aj)=P(x|θj, s); R1(G) was produced by using P(x|aj) = P(x|βj, 
s), which is a normal distribution; d  is the average distortion.  

The results in Fig. 5 and Table 1 show that information 
efficiency R/G reaches its maximum, 1, as P(x|aj) = P(x|θj, 
s = 1) = P(x|θj). Shannon information R increases faster 
than semantic information G+(R) as s > 1. G+(R) almost 
stops at 2.58 bits as s > 20.  

The real control result may be a likelihood function 
P(x|βj, s) different from P(x|θj, s). This paper assumes that 
we know P(x|βj, s) (j=0, 1, …) already without needing to 
learn them. The main task is to select a proper parameter βj. 

We obtained function R1(G) by using P(x|aj) = P(x|βj, 
s), a normal distribution. We used the expectation and the 
square error of P(x|θj, s) as those of P(x|βj, s). Table 1 
shows the efficiencies R/G and R1/G changing with s.   

TABLE 1. R(G), R1(G), AND THE EFFICIENCIES CHANGE WITH S 

Information (bits) s = 1 s = 20 s = 40 
R 2.19 3.36 3.58 
G = G+(R) 2.19 2.58 2.59 
G/R 1 0.77 0.72 
R1 2.08 3.13 3.38 
G1 = G+(R1) 1.99 2.52 2.55 
G1/R1 0.95 0.80 0.76 

There is always R < R1 for any given G, which means R 
has a higher efficiency than R1. R1(G) cannot pass through 
the point at which R=G or G/R=1 because P(x|βj) is a 
symmetrical normal distribution, whereas P(x|θj) is 
asymmetrical (see Fig. 4). However, G1/R1 = 76 for s = 40 
is similar to G/R=0.77 for s = 20. The similarity means that 
the normal function is good enough for this example. 

One may think that we can select a certain x, such as 
P(x=80|aj) = 1, which can maximize I (X; aj/θj). However, 
this selection will make information efficiency be 0.23. 

B. Multi-goal Optimization for Information and Efficiency 

Fig. 6 shows a control task with two goals expressed by 
truth functions T(θ0|x) and T(θ1|x). We can imagine that the 



goals are two pastures with fuzzy boundaries, and we need 
to drive sheep there. If there is no control, the density 
distribution of the flock is P(x). We need to find a suitable 
probability distribution P(a)=P(y). 

 
(a) 

 
(b) 

Fig. 6 P(x|aj)=P(x|θj, s) (dashed lines) and P(x|βj, s) (dotted 
lines) in a two-goal control task. (a) is for s=1, and (b) is for s=5. 
P(x|βj, s) is a normal distribution produced by action aj (j=0,1).  

In Fig. 6, P(x) is a normal distribution (μ = 50, and σ 
=15); two truth functions as goals are T(θ0|x) =1–[1–exp(–
(x–20)2/50)]3 and T(θ1|x)=1/[1+exp(–0.75(x–c))]. For 
different s, we set initial P(a0)=P(a1)=0.5. Then we used 
(12) and (13) with three iterations to obtain P(aj|x) and P(aj) 
(j=0,1) and used (12) to get P(x|aj)=P(x|θj, s). Finally, we 
adopted (11) to obtain G(s), R(s), and R(G).  

Fig.7 displays the R(G) function. Table 2 shows the 
changes of P(a) with s in (12) and c in T(θ1|x). 

 
Fig. 7 The R(G) function (solid line) for a two-goal control task. 
The dashed line represents R1(G) produced by replacing P(x|θj, s) 
with a normal function P(x|βj, s) (j=0,1). 

Table 2 indicates that G and R increase and G/R 
decreases with s increasing; P(a1) decreases with c 
increasing. The change of P(a) reveals that the iterative 
algorithm can reduce the investment in a difficult goal. Fig. 
7 and Table 2 show that when s increases from 5 to 40, G 
slightly increases, meaning s=5 is good enough. 

TABLE 2. R(G), P(a) AND G/R CHANGES WITH S AND C. 

s c P(a0) P(a1) G (bits) R(bits) G/R 
1 75 0.535 0.465 3.43 3.43 1 
1 80 0.579 0.421 3.80 3.80 1 
5 75 0.540 0.460 3.89 4.29 0.907 
5 80 0.592 0.408 4.28 4.71 0.909 
40 75 0.540 0.460 3.95 5.01 0.803 
40 80 0.592 0.408 4.33 5.34 0.811 

The dashed line for R1(G) in Fig. 7 indicates that if we 
replace P(x|aj)=P(x|θj, s) with a normal distribution,  G and 
G/R1 do not obviously change.   

V. DISCUSSION 

A. How the Results Accord with Theoretic Analyses 

Section IV demonstrates that we can optimize 
constraint control with the help of the R(G) function. Fig. 
5, Fig. 7, Table 1, and Table 2 indicate that we can balance 
between maximizing purposive information and 
maximizing information efficiency. For example, it is 
proper to select s between 5 and 20. 

Fig. 6 and Table 2 reveal how the iterative algorithm 
can find a proper distribution P(a) that distributes a smaller 
proportion on a more difficult goal. 

B. About Alternative Variational Bayes  

To obtain P(y) from P(x) and P(x|θj) (j=1, 2, …), some 
people assume P(yj)=P(θj) (j=1, 2, …) and use Variational 
Bayes (VB) [28]. However, the iterative algorithm for P(y) 
in (14) and (15) is different and may be called Alternative 
Variational Bayes (AVB). AVB seems more simpler than 
VB. Besides the above application, the author has 
successfully applied AVB to mixture models [4], [27] and 
semantic compression [24]. Using VB, Friston proposed 
the Minimum Free Energy Principle [29]. Using AVB, 
perhaps we can improve this principle to the Maximum 
Information Efficiency Principle.  

C. Why Do We Use Regularization? 

The semantic mutual information formula (10) 
indicates that error regularization is for more semantic 
information and a larger likelihood. Section III-B reveals 
that information regularization (see (16)) is for higher 
information efficiencies. The above analyses should help 
us better understand two kinds of regularization.   

VI. CONCLUSIONS 

Theoretic analyses and experiments made clear that the 
semantic information G measure can be used to measure 
the purposiveness of range control (including error control) 
and the semantic information of imperatives. This measure 
can also be used as or for the reward function of 
reinforcement learning. The parametric solution of the R(G) 
function provides a general method for the tradeoff 
between maximizing purposive information G and 
maximizing the information efficiency G/R. 

Nevertheless, this paper only focuses on theoretical 
analyses. We need more experiments in combination with 
deep and reinforcement learning to verify the theory. 
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