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Abstract  It is very difficult to solve the Maximum Mutual Information (MMI) or Maximum Likelihood 
(ML) for all possible Shannon Channels or uncertain rules of choosing hypotheses, so that we have to use 
iterative methods. According to the Semantic Mutual Information (SMI) and R(G) function proposed by 
Chenguang Lu (1993) (where R(G) is an extension of information rate distortion function R(D), and G is the 
lower limit of the SMI), we can obtain a new iterative algorithm of solving the MMI and ML for tests, 
estimations, and mixture models. The SMI is defined by the average log normalized likelihood. The 
likelihood function is produced from the truth function and the prior by semantic Bayesian inference. A group 
of truth functions constitute a semantic channel. Letting the semantic channel and Shannon channel mutually 
match and iterate, we can obtain the Shannon channel that maximizes the Shannon mutual information and 
the average log likelihood. This iterative algorithm is called Channels’ Matching algorithm or the CM 
algorithm. The convergence can be intuitively explained and proved by the R(G) function. Several iterative 
examples for tests, estimations, and mixture models show that the computation of the CM algorithm is simple 
(which can be demonstrated in excel files). For most random examples, the numbers of iterations for 
convergence are close to 5. For mixture models, the CM algorithm is similar to the EM algorithm; however, 
the CM algorithm has better convergence and more potential applications in comparison with the standard 
EM algorithm. 
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1 Introduction 
It is a very important to use the Maximum Mutual Information (MMI) or Maximum Likelihood (ML) as 
criterion to optimize tests, estimation, predictions, classifications, image compression, and machine learning. 
The mutual information means saved mean code length and gives higher evaluation to the correct predictions 
of less probability events. It must be a good criterion when sources are not equiprobable. Yet, the Shannon 
information theory [1] uses distortion criterion instead of the mutual information criterion to optimize tests 
and estimations because the optimization needs to change the Shannon channel. Still, without fixing the 
channel, the mutual information cannot be calculated.  

“Maximum Likelihood” [2] appears in many papers, and it has two different meanings. Consider information 
transfer: 

Object X—>observed feature ZϵC—>hypothesis Y=f(Z) 

where X,  Z,  and Y are discrete random variables and f(Z) is a decision function that ascertains a partition of 
C and a Shannon channel P(Y|X). The optimal partition will provide the MMI. For a given Shannon channel, 

                                                           
1 The author’s email: lcguang@foxmail.com. Excel files for iterations at http://survivor99.com/lcg/CM-iteration.zip 



there is an ML. For all possible Shannon channels under a certain limit (such as the limit of Gaussian 
distribution), there is another ML, which is equivalent to the Maximum Average (for different Y) Log 
Likelihood  (MALL). This paper focuses on the latter. In the following, “ML” means MALL. 

The MMI and ML are so correlative that when we seek an MMI classification, we may need the likelihood 
method; when we seek an ML estimation (where the probability distribution of all possible hypotheses is 
uncertain), we could use the concepts of information or entropy. The relationship between the information 
measure and likelihood has drawn growing attention in recent decades [3, 4, 5]. 

Can we put likelihood into an information formula to combine Shannon’s information theory and the 
likelihood method more tightly. Akaike notes [3] that the maximum likelihood criterion is equivalent to the 
minimum Kullback-Leibller (KL) divergence [6] criterion, which is an important discovery. However, the 
divergence in that context does not mean conveyed information. Although the log relative likelihood ([4], pp. 
375-392) and log normalized likelihood [5] used by some researchers are very similar to an information 
measure; yet they cannot be expressed by the KL information or Shannon Mutual Information (SMI) directly 
because a sampling distribution is generally different from a likelihood function. 

There have been some iterative methods for maximizing the MMI and ML, including the Newton method 
[7], EM algorithm [8], and minimax method [9]. Still, we want a different iterative method with more 
efficiency and clearer convergence reasons to use in wider applications. 

In a different way, Chenguang Lu, in 1993 [10,11,12], directly defined the semantic information measure 
(SIM) with  the average log normalized likelihood to obtain a generalized KL formula and a generalized 
mutual information formula. Although he did not use the “likelihood”, he used the “predicted probability” 
which was actually the likelihood. This measure is called the “semantic information measure” because a 
likelihood function is produced by the truth function of a hypothesis Y and the prior probability distribution 
of X. Lu also proposed the R(G) function, which is an extension of Shannon’s rate distortion function R(D) 
[13], where G is the lower limit of the semantic mutual information or the average log normalized likelihood, 
and R is the minimum for a given G. Now it is found that Lu’s information measure and the R(G) function 
can be used to achieve the MMI and ML more conveniently. 

To introduce Lu’s method and show its compatibilities with popular likelihood method and popular 
information theoretical method, it is necessary to clarify the relationship between Lu’s truth function and 
likelihood function. A truth function is equal to a normalized likelihood function with a coefficient so that a 
truth function has the maximum 1, and takes value from the real interval [0,1]. With the prior probability 
distribution of a sample or a source, the truth function and likelihood function can be mutually ascertained 
by Bayesian inference. Whereas a group of truth functions constitute a semantic channel representing the 
semantic meanings of a group of hypotheses that are understood by the receiver, a Shannon channel 
represents the rule of using the hypotheses by a sender. 

Specifically speaking, the new discovery is that by letting the semantic channel and Shannon channel 
mutually match and iterate, we can achieve the MMI and ML, not only for tests and estimations, but also 
for mixture models, for which the EM algorithm [8] is often used. Especially, by the R(G) function, the 
convergence of the new algorithm can intuitively be explained and proved. We call this algorithm 
Channels’ Matching algorithm, or the CM algorithm.  

We first introduce the semantic channel, semantic information measure, and R(G) function in a new way 
that is as compatible with the likelihood method as possible. Then we discuss how the CM algorithm is 
applied to tests, estimations, and mixture models with some examples. Finally, we compare the CM 
algorithm with the EM algorithm to show the advantages and significance of the CM algorithm. 

2 Semantic channel and semantic Bayesian inference 
A semantic channel consists of a group of truth functions, and affects and is affected by a Shannon channel. 
First, we discuss the Shannon channel. 

2.1 The Shannon Channel and the Transition Probability Function 

Let X be a discrete random variable representing a fact with alphabet A={x1, x2, …, xm}, let Y be a discrete 
random variable representing a message with alphabet B={y1, y2, …, yn}, and let Z be a discrete random 
variable representing a observed condition with alphabet C={z1, z2, …, zw}. A message sender chooses Y to 



predict X according to Z. For example, in weather forecasts, X is a rainfall, Y is a forecast such as “There will 
be light to moderate rain tomorrow”, and Z is a set of meteorological data. In medical tests, X is an infected 
or uninfected person, Y is positive or negative (testing result), and Z is a laboratory datum or a set of laboratory 
data. 

We use P(X) to denote the probability distribution of X and call P(X) a source, and we use P(Y) to denote the 
probability distribution of Y and call P(Y) a destination. We call P(yj|X) with certain yj and variable X a 
transition probability function from X to yj. Then a Shannon’s channel is composed of a group of transition 
probability functions [1]: 
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Here a bidirectional arrow means equivalence. The transition probability function has two properties: 

1)P(yj|X) is different from the conditional probability function P(Y|xi) or P(X|yj) in that whereas the latter is 
normalized,  the former is not. In general, ∑i P(yj|ei)≠1.  

2)P(yj|X) can be used to make Bayesian inference to get the posterior probability distribution P(X|yj) of X. 
To use it by a coefficient, the two inferences are equivalent, i. e. 
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2.2 Semantic Channel and Semantic Bayesian Inference 

In terms of hypothesis-testing, X is a sample or a piece of evidence and Y is a hypothesis or a prediction. We 
need a sample sequence or a sampling distribution P(X|.) to test a hypothesis to see how accurate it is. 

Let ϴ be a random variable for a predictive model, and let θj be a value taken by ϴ when Y=yj. The semantic 
meaning of a predicate yj(X) is defined by θj or its (fuzzy) truth function T(θj|X)ϵ[0,1]. Because T(θj|X) is 
constructed with some parameters, we may also treat θj as a set of model parameters (not one of parameters 
as in the popular method). We can also state that T(θj|X) is defined by a normalized likelihood, i. e., T(θj|X)=k 
P(θj|X)/P(θj)= k P(X|θj)/P(X), where k is a coefficient  that makes the maximum of T(θj|X) be 1. If 
T(θj|X)ϵ{0,1}, T(θj|X) will be the feature function of a set, whose every element makes yj true. Therefore, θj 

can also be regarded as a fuzzy set, and T(θj|X) can be considered as a membership function of a fuzzy set 
defined by Zadeh [14]. 

In contrast to the popular likelihood method, the above method uses sub-models θ1 , θ2, …, θn instead of one 
model θ or ϴ, where a sub-model θj  is separated from a likelihood function P(X|θj) and defined by a truth 
function T(θj|X). The P(X|θj) here is equivalent to P(X|yj, θ) in the popular likelihood method. A sample used 
to test yj is also a sub-sample or conditional sample. These changes will make the new method more flexible 
and more compatible with the Shannon information theory. 

When X=xi, yj(X) become yj(xi), which is a proposition with truth value T(θj|xi). Then there is a semantic 
channel: 
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The truth function is also not normalized， and its maximum is 1. Similar to P(yj|X) and P(θj|X), T(θj|X) can 
also be used for Bayesian inference, i. e. semantic Bayesian inference (or set-Bayesian inference [10]), to 
produce likelihood function: 
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where T(θj) is called the logical probability of yj. We may also write T(θj) as T(yj). If T(θj|X)∝ P(yj|X), then 
semantic Bayesian inference is equivalent to Bayesian inference.  

Note that T(θj) is the logical probability of yj, whereas P(yj) is the probability of choosing yj. The two 
probabilities are very different. T(ϴ) is also not normalized, and generally there is T(θ1)+T(θ2)…+ T(θn)>1. 
Consider hypotheses y1=“There will be light rain”, y2=“There will be moderate rain”, and y3=“There will be 
light to moderate rain”. According to their semantic meanings, T(θ3)≈T(θ1)+T(θ2); however, we may have 
P(y3)<P(y1). Particularly, when yj is a tautology, T(θj)=1; but P(yj) is almost 0.  

The P(X|θj) is a likelihood function and is also different from P(X|yj) which is a sampling distribution under 
the observed condition ZϵCj. Hence P(X|yj)=P(X|ZϵCj), which is denoted by P(Z|Cj) for simplicity. Because 
larger samples are considered in this paper, we do not use a sample sequence in time, but a sampling 
distribution on the set A.  

A semantic channel is always supported by a Shannon channel. For weather forecasts, the transition 
probability function P(yj|X) indicates the rule of choosing a forecast yj. The rules used by different forecasters 
may be different and have more or fewer mistakes. Whereas, T(θj|X) indicates the semantic meaning of yj 
that is understood by the audience. The semantic meaning is generally publicly defined and may also come 
from (or be affected by) the past rule of choosing yj. To different people, the semantic meaning should be 
similar. 

2.3 Is the Likelihood Function or Truth Function Provided by the GPS’s 
Positioning? 

Let us consider the semantic meaning of the small circle (or arrow) on the map on a GPS device. The circle 
tells where the position of the device is. A clock, a balance, or a thermometer is similar to a GPS device in 
that their actions may be abstracted as yj=”X≈xj”, j=1, 2, …, n. The Y with such a meaning may be called an 
unbiased estimate, and its transition probability functions P(yj|X)=P(Cj|X), j=1, 2, …, n, constitute a Shannon 
channel. Its semantic channel may be expressed by 

T(θj|X)=exp[-|X-xj|2/(2d2)], j=1, 2, …, n        (2.5) 

where d is the standard deviation.  

Consider a particular environment (shown in Figure 1) where a GPS device is used in a car.  

 

Figure 1. An illustration of a GPS’s positioning. When the prior probability P(X) is uneven and variable, using a truth 
function to make a Bayesian inference will be better than using a likelihood function to predict directly 

The positioning circle is at a building on the map. The left side of the building is a highway and the right side 
is a road. We must determine the most possible position of the car. If we think that the circle provides a 
likelihood function, we should infer “The car is most possibly on the building”. However, common sense 
would indicate that this conclusion is wrong. Alternatively, we can understand the semantic meaning of the 
circle by a transition probability function. Although this ideal appears sensible, the transition probability 
function is difficult to obtain, especially when the GPS has a systematical deviation. One may posit that we 



can use a guessed transition probability function and neglect its coefficient. This idea is a good one. In fact, 
the truth function in Eq. (2.5) is just such a function. With the truth function, we can obtain the likelihood 
function by semantic Bayesian inference: 
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This likelihood function accords with common sense and avoids conclusion “The car is most likely on the 
building”.  The denominator is the logical probability, and it resembles a partition function that often appears 
in probability theories, information theories, and thermodynamics. 

This example shows that a semantic channel is simpler than a Shannon channel. Later, it will be shown that 
in medical tests, the semantic channel is also simpler and more understandable than the Shannon channel. 

3 Semantic information measure and the optimization of the Semantic 
Channel 
The Maximum Semantic Information (MSI) estimation bellow is essentially maximum normalized likelihood 
estimation. Although the MSI estimation is compatible with Maximum Likelihood Estimation (MLE) and 
maximum likelihood ratio estimation, it can be used in cases where the source is changed. 

3.1 Defining Semantic Information by Truth Function and Normalized Likelihood 

In the Shannon information theory, there is only the statistical probability without the logical probability or 
likelihood (predicted probability). However, Lu defined semantic information by these three types of 
probabilities at the same time.  

The semantic information conveyed by yj about xi is defined as [10]: 
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where semantic Bayesian inference is used; it is assumed that prior likelihood is equal to prior probability. 
For an unbiased estimation, its truth function and semantic information are illustrated in Figure 2. 

 
Figure 2. Semantic information is defined by log normalized likelihood. The larger the deviation is, the less information 
there is; the less the logical probability is, the more information there is; lastly, a wrong estimation may convey negative 
information. 

 

After averaging I(xi; θj), we obtain semantic (or generalized) KL information: 
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The statistical probability P(xi|yj ，) i=1, 2, …，on the left of “log” above, represents a sampling distribution 
(note that a sample or sub-sample is also conditional) to test the hypothesis yj or model θj. If yj=f(Z|ZϵCj), 
then P(X|yj)=P(X|ZϵCj), which is also denoted by P(X|Cj). 

The relationship between the generalized KL information and likelihood is simpler than that between the KL 
information and likelihood. The KL divergence can be written as the relative entropy H(P(X )||P(X|yj)), which 
means lost information when we use P(X) as P(X|yj). The generalized KL information increases with 
likelihood increasing while the KL information does not. Therefore, the generalized KL information accords 
with our information concept. It may be negative like log normalized likelihood. It is this property that tells 
us that wrong predictions or lies may convey negative information.   

After averaging I(X; θj), we obtain semantic (or generalized) mutual information: 
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Where H(X) is the Shannon entropy of X, ϴ is one of a group models (θ1, θ2, …, θn), H(X|Θ) is the generalized 
posterior entropy of X. If P(X) is predicted and denoted by Q(X), then there is the relative entropy or KL 
divergence: 
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where Hϴ(X) is the generalized entropy of X. It is easy to prove that every generalized entropy above is larger 
or equal to the corresponding Shannon entropy. They are equal only when a predicted probability distribution 
totally accords with a statistical probability distribution. 

Assume that the size of the sample used to test yj is Nj; the sample points come from independent and 
identically distributed random variables. Among Nj points, the number of xi is Nij. When Nj is infinite, 
P(X|yj)= Nij/Nj。 Hence there is the following log normalized likelihood: 
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After averaging the above likelihood for different yj, j=1, 2, …, n, we have the average log normalized 
likelihood (which is equal to the semantic mutual information by N (N=N1+N2+…+Nn): 
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It shows that the ML criterion is equivalent to the minimum generalized posterior entropy criterion. When 
we optimize θj or ϴ, P(X) does not change, the MSI criterion is also equivalent to the ML criterion. It is easy 
to find that when P(X|θj)=P(X|yj)(for all j), the semantic mutual information I(X; ϴ) will be equal to the 
Shannon mutual information I(X;Y). The latter is the special case of the former, and the former is compatible 
with the latter. 



3.2 The Optimization of Semantic Channels 

Optimizing a predictive model ϴ is equivalent to optimizing a semantic Channel. For given yj, optimizing 
θj is equivalent to optimizing T(θj |X) by 
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I(X; θj) can be written as the difference of two KL divergences: 
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Because the KL divergence is greater than or equal to 0, when 

P(X|θj)=P(X|yj)        (3.9) 

I(X; θj) reaches its maximum and is equal to the KL information I(X; yj). Let the two sides be divided by P(X); 
then 
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Set the maximum of T(θj|X) to 1. Then we obtain [16] 

T*(θj|X)=P(yj|X)/P(yj|xj*)      (3.11) 

where xj* is the xi that makes P(yj|xj*) be the maximum of P(yj|X). Generally it is not easy to get the P(yj|X); 
yet for given  P(X|yj) and P(X), it is easy to get T(θj|X) than to get P(yj|X) since 

T*(θj|X)=[P(X|yj)/P(X)]/[P(xj*|yj)/P(xj*)]      (3.12) 

In this equation, xj* is such an xi that makes P(xj*|yj)/P(xj*) be the maximum of P(X|yj)/P(X). 

In Eq. (3.3), when P(Y|X) is fixed,we change T(X|ϴ) so that I(X; ϴ) reaches its maximum. This process is 
called “making the semantic channel match the Shannon channel”. When P(X|θj)=P(X|yj)(for all j) or 
T(X|ϴ)∝P(Y|X),  I(X; ϴ) reaches its maximum, and is equal to the Shannon mutual information I(X;Y). 
However, conversely, when T(X|ϴ) is fixed, P(Y|X)∝T(X|ϴ) does not maximize I(X; ϴ). For given T(X|ϴ), 
there may be other Shannon channels conveying more semantic information. How the Shannon channel 
matches the semantic channel will be discussed later. 

Similar to the Maximum-A-Posteriori (MAP) estimation, the MSI estimation also uses the prior. The 
difference is that the MAP uses the prior of Y, whereas the MSI uses the prior of X. The MSI is more 
compatible with Bayesian inference. The Eq. (3.7) fits parameter estimations, and the Eqs. (3.11) and (3.12) 
fit non-parameter estimations with larger samples. 

4 The Matching Function R(G) of Shannon Information and Semantic 
Information 

The R(G) function is an extension of the rate distortion function R(D). It was used to resolve the problem 
with image compression according to visual discrimination [10-12]. Now it can be used to explain the 
channels’ mutual matching and the CM algorithm. 

4.1 From the R(D) Function to the R(G) Function 

In the R(D) function, R is the information rate, D is the upper limit of the distortion. The R(D) function means 
that for given D, R=R(D) is the minimum of the Shannon mutual information I(X;Y). The (information) rate 
distortion function with parameter s [15] is 
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where λi=∑j P(yj)exp(sdij) is the partition function. 

Let dij be replaced with Iij= I(xi; yj)=log[T(θj|xi)/T(θj)]= log[P(xi|θj)/P(xi)], and let G be the lower limit of the 
semantic mutual information I(X; ϴ). The R(G) function for a given source P(X) is defined as 
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Following the derivation of R(D), we can obtain [11, 12] 

( ) ( ) ( )2 ) / = ( ) ( ) /

( ) ( ) ( ) ln

ijsI s
ij i j i ij i j ij i

i j i j

i i
i

G s I P x P y I P x P y m

R s sG s P x

 





 

 


   (4.3) 

where mij=T(θj|xi)/T(θj)=P(xi| θj)/P(xi) is the normalized likelihood; λi=∑j P(yi) mij
s. We may also use mij= 

P(xi| θj), which results in the same mij
s/λi. The shape of an R(G) function is a bowl-like curve as shown in 

Figure 3. 

 

 

Figure 3. The R(G) function of a binary source. As s=1, R=G, which implies that the semantic channel matches the 
Shannon channel; Rmax(Gmax) at the top-right corner means that the Shannon channel matches the semantic channel, hence, 
both R and G are at their maxima. 

 

The R(G) function is different from the R(D) function.  For a given R, we have the maximum value G+ and 
the minimum value G-, which is negative and means that to bring a certain information loss to enemies, we 
also need certain objective information R. When R=0, G is negative, which means that if we listen to someone 
who randomly predicts, the information that we already have will be reduced. 

In rate distortion theory, dR/dD=s (s≤0) . It is easy to prove that there is also dR/dG=s,  where s may be less 
or greater than 0. The increase of s will reduce the standard deviation of the conditional probability or 
transition probability distribution, or raise the model’s predictive precision. 

If s changes from positive s1 to -s1, then R(-s1)=R(s1) and G changes from G+ to G - (see Figure 3). 

When s=1, λi=1, and R=G, which means that the semantic channel matches the Shannon channel and the 
semantic mutual information is equal to the Shannon mutual information. When s=0, R=0 and G(s=0)<0. In 
Figure 3, c= G(s=0). 

We use the binary source as an example to illustrate the function R(G). Assume  
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Following the derivation of R(D) function for a binary source [13, 16], we have 
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    (4.4) 

where h=(b-a)/2, c=(a+b)/2, and G1=G-c. The R(G) function is illustrated in Figure 3, where it is assumed 
that P(x0)=P(x1)=0.5; T(θ1|x1)=T(θ0|x0)=1 and T(θ1|x0)=T(θ0|x1)=0.2. Hence b=0.737 bits, a=-1.585 bits, and 
c=-0.424 bits. 

We may define r=G/R as information efficiency, and its maximum is 1 as s=1 or P(X|θj)=P(X|yj), for j=1, 
2, …, n. 

In fact, in the rate distortion theory, if we are allowed to produce a larger error probability, the shape of the 
function R(D) is also a bowl-like curve. As a result, we can also use a bowl-like R(D) function to optimize 
the camouflaged messages with greater distortion to puzzle enemies. 

4.2 Viewing the Maximum Likelihood Ratio Tests from the R(G) Function 

For a medical test (see Figure 4), A={x0，x1} where x0 means no-infected person and x1 means infected 
person, and B={y0, y1} where y0 means test-negative and y1 means test-positive.  

 

Figure 4 Illustrating a medical test. It can be abstracted as a 2×2 Shannon nosy channel and the Shannon mutual 
information changes with partition point z’. 

 

In medical tests, the conditional probability in which a test for an infected testee is positive is called sensitivity, and the 
conditional probability in which a test for an uninfected testee is negative is called specificity [16]. The 
sensitivity and specificity form a Shannon channel as shown in Table 1.    

Table 1 The sensitivity and specificity  of medical tests form a Shannon’s channel P(Y|X) 

Y Infected x1 Uninfected x0 

Positive y1 P(y1|x1)=sensitivity P(y1|x0)=1-specificity 

Negative y0 P(y0|x1)=1-sensitivity P(y0|x0)=specificity 

 

If we absolutely believe that a test-positive means being infected and a test-negative means not being infected, 
then there are truth values T(y1|x1)=T(y0|x0)=1, T(y1|e0)=T(y0|x1)=0. If we use these truth values as the semantic 
channel, the information will be negatively infinite when one counterexample exists. Thus, we need to 
consider the confidence levels of yj. Let the confidence level of yj be denoted by b, and let the no-confidence 
level (i. e. the significance level)be denoted by b’=1-|b|. Then the truth function of yj may be defined as 

T(θj|X)= b’ +bT(yj|X)          (4.5) 

Here, b’ is actually the truth value of a counterexample. 



Assume that the no-confidence level of y1 and y0 are b1’ and b0’ respectively. Assume that the significance 
level of a medical test is α. The α means that there should be b0’≤α. Table 2 shows the semantic channel for 
medical tests. 

Table 2. Two degrees of disbelief of medical tests forms a semantic channel T(ϴ|X) 

Y Infected x1 Uninfected x0 

Positive y1 T(θ1|x1)=1 T(θ1|x0)=b1’ 

Negative y0 T(θ0|x1)=b0’ T(θ0|x0)=1 

 

According to Eq. (3.11), two optimized no-confidence levels are 

b1’*= P(y1|x0)/P(y1|x1);   b0’*= P(y0|x1)/P(y0|x0)         (4.6) 

In the medical community, Likelihood Ratio is used to indicate how good a test is [15]. The Eq. (4.6) based 
on the MSI test is compatible with popular Likelihood Ratio (LR) test. There are 

LR+ =P(y1|x1)/P(y1|x0)=1/b1’*;  LR- =P(y0|x0)/P(y0|x1)=1/b0’*     (4.7) 

The LR has been used by Thornbury et al for Bayesian inference [17]. Still, it is easier to use the no-
confidence level for semantic Bayesian inference. For example2, y1=HIV-positive, b1’*=0.0011. If the testees 
come from ordinary people and P(x1)=0.002, then according to the semantic Bayesian formula (2.4), we have  

P(x1|θ1)=0.002/(0.002+0.0011*0.998)=0.65; 

If the testees are gay men and P(x1)=0.1, then 

P(x1|θ1)=0.1/(0.1+0.0011*0.99)=0.991. 

If we predict the infected rate by the likelihood function P(X|θ1) directly, after P(x1) is changed, the likelihood 
function will be invalid. 

Consider the likelihood ratio of tests without a certain partition on C: 
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According to Eqs. (3.6) and (4.3), max(logrL)=max(-NH(X|ϴ))-min(-NH(X|ϴ)=N(G+-G-)(see Figure 3). 
After R and G+ are ascertained, s and G- are also ascertained. Therefore, the maximum likelihood ratio 
criterion is equivalent to the maximum likelihood criterion or maximum semantic information criterion. 

A binary Shannon channel may be noiseless so that the maximum of R is Rmax=H(X). Yet, for the test shown 
in Figure 4, noise is inevitable, and hence the P(Y|X) for Rmax<H(X) is not easy to find. As a result, we need 
an iterative method. 

5 The CM algorithm for tests and estimations 
This section will introduce the CM algorithm for tests and estimations, use the R(G) function to explained 
the iterative convergence, and provide some examples to show iterative processes and speeds.  

5.1 Explaining channels’ matching and iterative convergence by R(G) function 

Matching I (Right-step): The semantic channel matches the Shannon channel. 

We keep the Shannon channel P(Y|X) constant, and optimize the semantic channel T(ϴ|X) so that 
P(X|θj)=P(X|yj) or T(θj|X)∝P(yj|X)，and hence I(X; ϴ)  reaches its  maximum I(X;Y). The aim of the 
matching I is to let (R,  G) move to the point of tangency of curve R(G) and line R=G, where s=1. See Figure 
5 for details. 

                                                           
2 https://arxiv.org/abs/1609.07827 



Matching II (Left-step): The Shannon channel matches the semantic channel. 

While keeping the semantic channel T(ϴ|X) constant, we change the Shannon channel P(Y|X) to maximize 
the semantic mutual information I(X; ϴ). In this process， P(Y|X) matches T(ϴ|X). The R(G) function 
reminds us that R and G can be raised by increasing the parameter s. After Matching II， (G,  R) locates the 
top-right corner of a R(G) function curve in Figure 5. 

Matching III (Iteration): The two channels mutually match and iterate (as shown in Figure 5). 

 

Figure 5  Illustrating the iterative convergence for tests and estimations. The matching I is for G=R; the matching II is 
to increase R to the top-right corner of a R(G) function; Repeating the matching I and matching II can maximize R and 
G to obtain Rmax and Gmax. 

The semantic channel and the Shannon channel mutually match alternatively, i. e., iterate, so that R and G 
reach their maxima at the same time. In terms of likelihood, the predictive model ϴ and the selection rule of 
model label Y mutually match to achieve maximum average log likelihood. We may say that a semantic 
channel comes from an old Shannon channel and can be a ladder for a better Shannon channel; then a better 
Shannon channel can be used to produce a new semantic channel. This process can be repeated.  

5.2 Three Iterative Examples for Tests and Estimations 

It is much simpler to use the CM algorithm for tests and estimations than for mixture models. We do not 
prove the iterative convergence, which can be intuitively seen by Figure 5. In the following, we use some 
examples to show the convergence. For the test as shown in Figure 4, optimizing the Shannon channel is 
equivalent to optimizing the dividing point z’. When Z>z’, we choose y1; otherwise, we choose y0. 

As an example of the test, Z∈C={1, 2, …, 100} and P(Z|X) is a Gaussian distribution function: 

P(Z|x1)=K1exp[-(Z-c1)2/(2d1
2)],  P(Z|x0)=K0exp[-(Z-c0)2/(2d0

2)] 

where K1 and K0 are normalizing constants. From P(X) and P(Z|X), we can obtain P(X|Z). After setting the 
starting z’, say z’=50, as the input of the iteration, we perform the iteration as follows. 

The Right-step (Matching I): Calculate the following items in turn. 

1) The transition probabilities for the Shannon channel: 
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2) The no-confidence levels b1’* and b0’* according to Eq. (4.6); 

3) The logical probabilities T(θ1)=P(x1)+b1’*P(x0) and T(θ0)=P(x0)+b0’*P(x1); 



4) Iij=I(xi; θj) for i=0, 1 and j=0, 1; 

5) The average semantic information I(X; θ1|Z) and I(X; θ0|Z) for given Z (displaying as two curves): 

( ; | ) ( | )j k i k ij
i

I X z P x z I  ，k=1, 2, …, 100; j=0, 1    (5.1) 

Left-step (Matching II): Compare two information function curves I(X; θ1|Z) and I(X; θ0|Z) over Z to find 
their cross point. Use this point as new z’. If the new z’ is the same as the last z’ then let z*=z’ and quit the 
iteration; otherwise go to the Right-step, where z* is the optimized dividing point. 

The following are the reports of three computing examples. Each of Example 2 and Example 3 has two 
dividing points z1’ and z2’; the iterative principle is the same.    

Iterative Example 1 (for a 2×2 Shannon Channel) 

The Input data: P(x0)=0.8; c0=30, c1=70; d0=15, d1=10. The start point z’=50.  

The iterative process: Matching II-1 gets z’=53; Matching II-2 gets z’=54; Matching II-3 get z*=54. 

Comparison: To see information loss, we get P(X)=0.72 bit; I(X; Z)=0.55 bit; and I(X; ϴ)= I(X; 
Y)=∑kP(zk)I(X; Y|zk)=0.47 bit. 

Analysis: If we use minimum error rate as criterion, the optimal dividing point is 57; yet the above optimal 
point is z*=54. It is shown that compared with minimum error rate criterion, MSI criterion puts more attention 
to the correct predictions of small probability events and allow more false positives and less false negatives 
when P(x1) is much less than P(x0).  

Iterative Example 2 (for a 2×3 Shannon channel) 

For this channel, if z1’<Z≤ z2’, Y=y2=”The test tells nothing”. 

The input data: P(x0)=0.8; c0=30, c1=70; d0=15, d1=10. The start point z’1=50 and z2’=60. 

The iterative process: Matching II-1 gets z1’=46 and z2’=57; Matching II-2 gets z1’=47 and z2’=59; Matching 
II-3 gets z1*=47 and z2*=59. 

Comparison and analysis: H(X)=0.72 bit; I(X; Z)=0.55 bit; I(X; Y)=0.52 bit. Yet in Example 1, I(X; Y)=0.47 
bit. So, This 2×3 channel can convey more semantic information than the above 2×2 channel. This example 
shows that we may replace the limit of significance level with the neutral hypothesis y2.    

Iterative Example 3 (for a 3×3 Shannon channel) 

This example is to examine a simplified estimation. A pair of good start points and a pair of bad start points 
are used to check the liability and speed of the iteration.  

The Input data: P(x0)=0.5, P(x1)=0.35, and P(x2)=0.15; c0=20, c1=50, and c2=80; d0=15, d0=15, d1=10, and 
d2=10.  

The iterative results:  

1) With the good start points: z1’=50 and z2’=60, the number of iterations is 4; z1*=35 and z2*=66.  

2) With the bad start points: z1’=9 and z2’=20, the number of iterations is 11; z1*=35 and z2*=66 also. Figure 6 shows 
the information curves over Z before and after the iteration. 

 



(a)          (b) 

Figure 6  The iteration with bad start poins. At the beginning of the iteration (a), three information curves have small 
positive areas. At the end of the iteration (b), three information curves have large positive areas so that I(X;ϴ) reaches 
its maximum. This figure shows that the iterative convergence is stable even if the start points are very bad. 

5.3 Analyses and discussions 

The above computing examples show that the convergence of the CM algorithm for tests and estimations is 
fast and inevitable. Generally, the numbers of iterations for convergence are three to five. In the above 
examples, Z is one dimensional. If Z is multi-dimensional, calculation must be more complicated; however, 
the numbers of iterations for convergence should be similar.   

The above examples do not use the parameter s of the R(G) function for optimizing the Shannon channel 
because z* has contained the information of optimized s. The R(G) function with parameter s reminds us that 
we may use the following equation for fuzzy decision (or classification) function with the consideration of 
information efficiency G(s)/R(s).  

'
'

( )[exp( ( ; | ))]
( | )

( )[exp( ( ; | ))]

s
j j k

j k s
j kj

j

P y I X z
P y z

P y I X z





 ‘
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When s→+∞， P(yj|Z) becomes the feature function of Cj,  as C is optimally partitioned, and tells us the 
optimal partitioning point z*. Even if Z is multi-dimensional, the above equation is also tenable. This formula 
can save our energy for searching the boundaries of Cj for all j.  

We may apply the CM algorithm to general predictions, such as weather forecasts. The application to 
predictions is similar to the application to estimations. The difference is that the truth functions of predictions 
may be various. Then we can explain semantic evolution. A Shannon channel indicates a language usage, 
whereas a semantic channel indicates the comprehension of the audience. The Right-step is to let the 
comprehension match the usage, and the Left-step is to let the usage (including the observations and 
discoveries) match the comprehension. The mutual matching and iterating of two channels means that 
linguistic usage and comprehension mutually match and promote. Natural languages should have been 
evolving in this way. 

If the sampling distribution is discontinuous or irregular so that information curves I(X;θj|zk) and I(X;θj+1|zk) 
have more than one cross points, whether may the CM algorithm result in local convergence? This question 
needs further study. 

6 The CM algorithm for Mixture Models 
This section will solve mixture models by the CM algorithm, prove the iterative convergence with the help 
of the R(G) function，and use two examples to show the iterative process and convergent speed. Then we 
compare the CM algorithm with the EM algorithm.  



6.1 Explaining the iterative process by R(G) function 

Assume a sampling distribution P(X) is produced by the conditional probability P*(X|Y) being some function 
such as Gaussian distribution. We only know that the number of the mixture components is n, without 
knowing the true P(Y), denoted by P*(Y). We need to solve P(Y) that is close to P*(Y) and P(X|Θ) that is 
close to P*(X|Y). The Z and X in tests and estimations now are merged into X. A prediction Y is no long 
correct or wrong, but we require that the predicted probability distribution of X, denoted by Q(X), is as close 
to the sampling distribution P(X) as possible, i. e. H(Q||P) is as small as possible. 

Still, we use P*(Y|X) and R*=I*(X;Y) to denote the corresponding Shannon channel and Shannon mutual 
information. When Q(X)=P(X), there should be P(X|Θ)=P*(X|Y)，and G=G*=R*. 

Solving maximum likelihood mixture models is different from solving maximum likelihood tests and 
estimations. For mixture models, when we let the Shannon channel match the semantic channel (in Left-
steps), we do not maximize I(X;Θ), but seek a P(X|Θ) that accords with P*(X|Y) as possible (Left-step a in 
Figure 7 is for this purpose), and a P(Y) that accords with P*(Y) as possible (Left-step b in Figure 7 is for this 
purpose). That means we seek a R that is as close to R* as possible. Meanwhile, I(X;Θ) may decrease. 
However, in popular EM algorithms, the objective function, such as logP(XN, Y|Θ), is required to keep 
increasing without decreasing in both steps.  

With CM algorithm, only after the optimal model is obtained, if we need to choose Y according to X (for 
decision or classification), we may seek the Shannon channel P(Y|X) that conveys the MMI Rmax(Gmax) (see 
Left-step c in Figure 7).  

 

Figure 7 Illustrating the CM algorithm for mixture models. There are two iterative examples. One is for R>R* and 
another is for R<R*. The Left-step a and Left-step b make R close to R*, which means (G,  R) is longitudinally improved; 
whereas the Right-step increases G so that (G,  R) approaches line R=G, which means (G,  R) is horizontally improved. 

 

If we guess that P(X) is produced by P*(X|Y)with the Gaussian distribution, then likelihood functions are 

P(X|θj)= kj exp[-(X-cj)2/(2dj)2], j=1,2,…, n 

Assume n=2, then parameters are c1, c2, d1, d2. In the beginning of the iteration, we may set P(y1)=P(y2)=1/2. 
We begin iterating from Left-step a. 



Left-step a Construct Shannon channel by  
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This formula has been used in the EM algorithm [8]. It was also used in the derivation process of the R(D) 
function [16]. Hence the semantic mutual information is 
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Left-step b Use the following equation to obtain a new P(Y) repeatedly until the iteration converges. 
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The convergent P(Y) is denoted by P+1(Y). This is because P(Y|X) from Eq. (6.1) is an incompetent Shannon 
channel which makes ∑i P(xi)P(yj|xi) ≠P(yj). The above iteration makes P+1(Y) match P(X) and P(X|Θ) 
better. This iteration has been used by Byrne for an improved EM algorithm [18]. 

When n=2, we should avoid choosing c1 and c2 so that both are larger or less than the mean of X; otherwise 
P(y1) or P(y2) will be 0, and cannot be larger than 0 later. If n>2, we may keep any P(yj) from being too small 
by stopping the iteration when P(yj)<0.1/n. Once we find a P(Y) that is competent in a Left-step b, we should 
have found a way for (G,  R) to converge to (G*, R*). In later step b, we should allow some P(yj) to be equal 
to 0.    

If H(Q||P) is less than a small number, such as 0.001 bit, then end the iteration; otherwise continue. 

Right-step: Optimize the parameters in the likelihood function P(X|Θ) on the right of the log in Eq. (6.2) to 
maximize I(X; Θ). Then go to Left-step a.  

About Left-step c After P(X|Θ) is optimized, perhaps we need to select Y (making decision or classification) 
according to X. The parameter s in R(G) function (see Eq. (4.3)) reminds us that we may use the following 
fuzzy decision functions 
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When s→+∞, the fuzzy decision will become crisp decision. Different from Maximum A prior (MAP) 
estimation, the above decision function still persists in the ML criterion or MSI criterion. The Left-step c in 
Figure 7 shows that (G,  R) moves to (Gmax, Rmax) with s increasing.  

6.2 Using two examples to show the iterative processes  

6.2.1 Example 1 for R<R*  

In Table 3 there are real parameters that produce the sample distribution P(X) and guessed parameters that 
are used to produce Q(X). The convergence process from the starting (G,  R) to (G*, R*) is shown by the 
iterative locus as R<R* in Figure 7. The number of iterations is 5 (5 Right-steps and 6 Left-steps). The  
iterative process is shown in Figure 8. The iterative results are shown in Table 3 and Figure 9.  

 Table 3 Real and guessed model parameters and iterative results of Example 1 (R<R*) 

  Real parameters in P*(X|Y) 
and P*(Y) 

Starting parameters & P(Y);

H(Q||P)=0.410 bit 

Parameters after 5 Right-steps 

 & P(Y); H(Q||P)=0.00088 bit 

 c d P*(Y) c d P(Y) c d P(Y) 

y1 35 8 0.7 30 15 0.5 35.4 8.3 0.720 

y2 65 12 0.3 70 10 0.5 66.2 11.4 0.280 

  



 

Figure 8 The iterative process as R<R*. The Rq is RQ in Eq. (6.4). H(Q||P)=RQ-G decreases in all steps. G is 
monotonically increasing. R is also monotonically increasing except in the first Left-step b. G and R gradually approach 
G*=R* so that H(Q||P)=RQ-G is close to 0. 

 

 

Figure 9 Comparison of the predicted distribution Q(X) with the sampling distribution P(X) after 5 iterations 

Analyses: In this iterative process, there are always R<R* and G<G*. After each step, R and G increase a 
little bit so that G approaches G* gradually. This process seams to tell us that each of Right-step, Left-step a, 
and Left-step b can increase G; and hence maximizing G can minimize H(Q||P), which is our goal. Yet, it is 
wrong. The Left a and Left b do not necessarily increase G. There are many counterexamples. Fortunately, 
the iteration for theses counterexamples still converges. Let us see Example 2 as a counterexample. 

6.2.2 Example 2 for R>R* 

Table 4 shows the parameters and iterative results. The iterative process is shown in Figure 10. 

Table 4 Real and guessed model parameters and iterative results for Example 2  (R >R*) 

 Real parameters in P*(X|Y) 
& P*(Y) 

Starting parameters & P(Y);

H(Q||P)=0.680 bit 

Parameters after 5 Right-steps 

 & P(Y); H(Q||P)=0.00092 bit 

 c d P*(Y) c d P(Y) c d P(Y) 

y1 35 8 0.1 30 8 0.5 38 9.3 0.134 

y2 65 12 0.9 70 8 0.5 65.8 11.5 0.866 
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Figure 10 The iterative process as R>R*. The Rq is RQ in Eq. (6.4). H(Q||P)=RQ-G decreases in all steps. R is 
monotonically decreasing. G increases more or less in all Right-steps and decreases in all Left-steps. G and R gradually 
approach G*=R* so that H(Q||P)=RQ-G is close to 0.  

Analyses: G is not monotonically increasing nor monotonically decreasing. It increases in all Right steps and 
decreases in all Left steps. This example is a challenge to all authors who prove that the standard EM 
algorithm or a variant EM algorithm converges.  

6.3 The proof and Explanation of the convergence of the CM algorithm  

Proof To prove the CM algorithm converges, we need to prove that H(Q||P) is decreasing or no-increasing 
in every step.  

Consider Right-step. Assume that the Shannon mutual information conveyed by Y about Q(X) is RQ,  and 
that about P(X) is R.  Then we have 
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Comparing G in Eq. (6.1) and RQ in Eq. (6.4), we can find 

1( || ) = ( || )QH Q P R G R H Y Y G         (6.7) 

In Right-steps, the Shannon channel and RQ does not change, G is maximized. Therefore H(Q||P) is 
decreasing and its decrement is equal to the increment of G.  

Consider Left-step a. After this step, Q(X) becomes Q+1(X)=∑j P(yj)P+1(X|θj). Since Q+1(X) is produced by 
a better likelihood function and the same P(Y), Q+1(X) should be closer to P(X) than Q(X),i. e. H(Q+1||P) < 
H(Q||P).  

Consider Left-step b. The iteration for P+1(Y) moves (G, R) to the R(G) function cure ascertained by P(X) 
and P(X|Θ). This conclusion can be obtained from the derivation processes of R(D) function [15] and R(G) 
function [12]. A similar iteration is used for P(Y|X) and P(Y) in deriving the R(D) function. Because R(G) is 
the minimum R for a given G, hence H(Q||P) (=RQ-G=R-G) becomes less. 

Because H(Q||P) becomes less after every step, the iteration converges. Q.E.D. 
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Now we use Figure 7 to explain (loosely prove) why the iteration can make (G, R) converge to (G*, R*), 
which should be global convergence instead of local convergence. We need horizontal improvement that 
makes (G,  R) close to line R=G, and also longitudinal improvement that makes R close to R*.  

In the Right-step, G increases, and R remains. So, (G, R) is moved towards rightward so that (G, R) is closer 
to the line R=G (rather than G is closer to G*), and hence is horizontally improved.  

In the Left-step a, Q(X) that is used to construct P(yj|X) becomes Q+1(X).  Hence there is the generalized KL 
information 
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To compare it with the average of the generalized KL information: 
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We can find ΔRa and H(Q+1/Q||P) are approximate. So, there is also ΔRa>0, which means P(X|Θ) is closer 
to P*(X|Y) than P-1(X|Θ), and hence R is improved, or say, (G,  R) is longitudinally improved. In this step, G 
may decrease. G decreases because G approaches R and also approaches G*.  

In the Left-step b, the iteration for P+1(Y) makes H(PY||PY
+1)=0. When R>R*, RQ approaches R; when R<R*, 

R approaches RQ. Hence, R or RQ approaches R*. In both cases, (G, R) moves to right R(G) function curve, 
and is closer to line R=G. Hence (G, R) is improved in two directions. In the first Left-step b, although 
H(Q||P) decreases, G exceptionally moves away from G*. This might be because the start-step does not 
improve Q(X).  We need further study for this exception. 

In summary, the iteration can make (G, R) globally converges to (G*, R*).  

6.4 Comparing the CM Algorithm with the EM Algorithm 

Compared with the other methods for mixture models, the CM algorithm is most similar to the EM algorithm. 
The comparison of the two algorithms will help us understand the both algorithms better. 

6.3.1 The difference of two algorithms 

In the Dempaste, Laird, and Rubin’s paper [8], which proposes the standard EM algorithm, and Wu’s paper 
[18], which provides the improved convergence proof, the likelihood of a mixture model is expressed as 
logP(XN|Θ)≥L=Q-H. In terms of the semantic information, there is   
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If we move P(Y) or P(Y|Θ) from Q into H, then Q will become -NH(X|Θ) and H becomes -NRQ.  If we add 
NH(X) to both sides of the inequality, we will have H(Q||P) ≤RQ-G, which is similar to Eq. (6.7). It is easy 
to prove  

Q=NG-NP(X)-NH(Y)     (6.11). 

where  H(Y)=-∑j P+1(yj)logP(yj) is a generalized entropy.  



The E-step of the EM algorithm and the Left-step a of the CM algorithm (see Eq. (6.1))are the same.  The 
M-step of the EM algorithm maximizes Q. It is equal to maximizing -H(X, Y|Θ)=G-H(X)-H(Y). So, the M-
step increases G and decreases H(Y). We may think the M-step merges the Left-step b and the Right-step of 
the CM algorithm into one step. In summary, 

The E-step of EM = the Left-step a of CM 

The M-step of EM ≈ the Left-step b + the Right-step of CM 

Neal and Hinton proposed a variant EM algorithm [19]. In this algorithm, F(PY,Θ)=-H(X, Y|Θ)+H(Y)(H(Y) 
is a Shannon entropy)is used as the objective function for optimization. F(PY,Θ) is similar to I(X; Θ) in the 
CM algorithm. In this variant EM algorithm, the E-step also maximize F(PY, Θ). However, in the Left-steps 
of the CM algorithm, we only need to optimize P(Y), rather than to maximize G. For instance, in the Example 
2, G is decreasing in all left-steps except the first Light-step b. 

There are also other improved EM algorithms [7, 20-23] with some advantages. However, no one of these 
algorithms facilitates that R converges to R*, and R-G converges to 0 as the CM algorithm. 

6.3.2 The Problem with the Convergence proofs of the EM algorithm 

The standard EM algorithm in the M-step performs the Left-step b and the Right-step of the CM algorithm 
at the same time. Since the Left-step b and Right-step have different purposes, it is not easy for the M-step 
to make G close to G* or P(X|Y, Θ) close to P*(X|Y) in some cases. For instance, in the Example 2, R* and 
G* are very small, and G is decreasing in all Left-steps except for the first Left-step b.  Because only when 
G is decreasing, G can approach less G*.  In the Example 1, H(Y) should be increasing because only when 
H(Y) is increasing, H(Y) can approach larger H*(Y).  However, maximizing Q by the M-step is equivalent to 
maximizing G-H(Y) always. If we first optimize P(Y) and then optimize P(X|Y, Θ) in the M-step, then the 
EM algorithm will be equivalent to the CM algorithm. That is why EM algorithm can converge. 

In [8] and [19], the authors prove that Q in the E-step is ne-decreasing. Byrne points out [18] that their proofs 
for “Q in the E-step is ne-decreasing” are flawed. We argue that “Q in the E-step is ne-decreasing” is not 
necessary because when R>R*, it impedes Q to converge to Q*=-NH*(X, Y). In Example 2, Q*=-6.031N. 
After the first optimization of parameters, Q=-6.011N>Q*. If we continuously maximize Q, Q cannot 
approach less G*. If Q decreases in E-steps, their convergence proofs cannot be tenable.  

A variant EM algorithm proposed by Neal and Hinton [20] moving optimizing P(Y) from the M-step to the 
E-step to accelerate the convergence. The CM algorithm is similar to this algorithm. Yet, it is questionable 
to maximize F(PY, Θ) in both steps. For the Example 2, maximizing G or F(PY, Θ) is against making G close 
to G*.     

The Jensen's inequality is used for the EM algorithm so that maximizing logP(XN|ϴ) is equivalent to 
maximizing L=Q-H. However, the CM algorithm does not use Jensen's inequality. The reason is that the 
sampling distribution P(X), sub-models θj (j=1, 2, …, n), and the semantic information measures are used so 
that we have H(Q||P)=RQ-G. Minimizing H(Q||P) is equivalent to maximizing G or logP(XN|ϴ). 

According to above theoretical analyses and examples, the CM algorithm converges faster and with clearer 
reasons in comparison with the standard EM algorithm. However, the convergence proof of the CM algorithm 
still needs improvements so that the proof is stricter in mathematics. 

6.3.3 Speeds and applications of algorithms 

For Gaussian mixture models with n=2, we used different true parameters and the same start parameters to 
examine the convergent speed of the CM algorithm. Assume that when H(Q||H)≤0.001, the iteration 
converge. The most possible number of iterations for convergence was 5. In minor cases where R-G was 
much less than |G*-G|, the iterative numbers for convergence were more than 30. The median number of 
iterations should be less than 10.  

According to [20], the standard EM algorithm needs more than 30 iterations; the variant EM algorithm needs 
about 17 iterations. According to [19],  the standard EM algorithm needs about 18 iterations; the Multi-Set 
EM algorithm needs about 12 iterations. In [7] where an improved EM algorithm is compared with the 
Newton method and distance is used as the convergence criterion, the improved EM algorithm needs 17 
iterations in average, and the Newton method needs 7 iterations in average. Yet, times that the both algorithms 
cost are similar.  



Obviously, the EM algorithm has higher convergence speed than the standard EM algorithm. To know exact 
differences of the numbers of iterations and times cost for convergence by two algorithms, we need to 
compare them with the same true parameters and start parameters. To the minor cases of slow convergence, 
if we selectively combine those methods of improving the EM algorithm [18, 21-24], such as the methods of 
optimizing start parameters, with the CM algorithm, the convergence for these cases should be much faster.  

The model obtained from the CM algorithm can be used in cases where the source P(X) is changed.  
According to Eq. (3.12), with P(X) and optimized P(X|θj)≈P*(X|yj)(for all j), we can obtain the truth function 
T(Aj|X)，which is similar to the logistic function. When P(X) is changed, we can obtain new likelihood 
function by the semantic Bayesian formula Eq. (2.4). For example, X denotes stature and Y denotes sex. First, 
we obtain the optimized likelihood function P(X|θ1) with a sample from adult population. Then, we can obtain 
T(θ1|X), and apply it to a specific crowd (such as middle school students) with different P(X) (the mean stature 
is a little shorter). For given sex (such as y1 for male), we can make semantic Bayesian inference to obtain 
new likelihood function P(X|θ1)=P(X)T(θ1|X)/T(θ1). However, in popular likelihood methods, the optimized 
model cannot be used to apply to cases with different P(X). 

The CM algorithm can also be used for decision (or classification) function with ML criterion. The Left-step 
c can be used for this purpose. The EM algorithm does not provide a similar method. 

Because the CM algorithm uses sampling distribution instead of sampling sequence, it fits cases with larger 
samples. However, the EM algorithm fits cases with smaller samples. 

The EM algorithm is based on a new semantic information theory. It has many other characteristics, such 
that it can be more conveniently used for tests and estimations than for mixture models; it may be used to 
explain the evolution of natural languages as discussed before. 

7 Conclusions 
This paper restates Lu’s semantic information method to show that his semantic information is defined with 
average log normalized likelihood. The paper reveals that by letting the semantic channel and Shannon 
channel mutually match and iterate (the CM algorithm), we can achieve the maximum Shannon mutual 
information and maximum average log-likelihood for tests, estimations, and mixture models. The iterative 
convergence can be intuitively explained and proved by Lu’s R(G) function. Several iterative examples of 
tests, estimations, and mixture models are provided. These examples and theoretical analyses show that, in 
comparison with the standard EM algorithm, the CM algorithm has faster speed, clearer convergence reasons, 
and wider potential applications. 

The paper also concludes that the tight combination of Shannon information theory and likelihood method is 
necessary for resolving difficult problems with tests, estimations, and mixture models.  The results show that 
with Lu’s semantic information method, the combination is feasible.  
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