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Abstract—Using fish-covering model, this paper 

intuitively explains how to extend  Hartley’s information 

formula to the generalized information formula step by 

step for  measuring subjective information: metrical 

information (such as conveyed by thermometers), sensory 

information (such as conveyed by color vision), and 

semantic information (such as conveyed by weather 

forecasts). The pivotal step is to differentiate condition 

probability and logical condition probability of a message. 

The paper illustrates the rationality of the formula, 

discusses the coherence of the generalized information 

formula and Popper’s knowledge evolution theory. For 

optimizing data compression, the paper discusses rate-of-

limiting-errors and its similarity to complexity-distortion 

based on Kolmogorov’s complexity theory, and improves 

the rate-distortion theory into the rate-fidelity theory by 

replacing Shannon’s distortion with subjective mutual 

information. It is proved that both the rate-distortion 

function and the rate-fidelity function are equivalent to a 

rate-of-limiting-errors function with a group of fuzzy sets 

as limiting condition, and can be expressed by a formula 

of generalized mutual information for lossy coding, or by 

a formula of generalized entropy for lossless coding. By 

analyzing the rate-fidelity function related to visual 

discrimination and quantizing bits of pixels of images, the 

paper concludes that subjective information is less than 

or equal to objective (Shannon’s) information; there is an 

optimal matching point at which two kinds of 

information are equal; the matching information 

increases with visual discrimination (defined by 

confusing probability) rising; for given visual 

discrimination, too high resolution of images or too much 

objective information is wasteful. 

Index Terms--Shannon’s theory, Popper’s theory, 

generalized information theory, subjective information, 

metrical information, sensory information, semantic 

information, complexity-distortion, rate-distortion, rate-

fidelity. 

I. INTRODUCTION 

To measure sensory information and semantic information, 

I set up a generalized information theory thirteen years ago 

[4-8] and published a monograph focusing on this theory in 

1993 [5]. But, my researches are still rarely known by 

English researchers of information theory. Recently, I read 

some papers about complexity distortion theory [2], [9] 

based on Kolmogorov’s complexity theory. I found that, 

actually, I had discussed complexity-distortion function and 

proved that the generalized entropy in my theory was just 

such a function, and had concluded that the complexity-

distortion function with size-unequal fuzzy error-limiting 

balls could be expressed by a formula of generalized mutual 

information. I also found that some researchers did some 

efforts [9] similar to mine for improving Shannon’s rate-

distortion theory.  

This paper first explains how to extend Hartley’s 

information formula to the generalized information formula,  

and then discusses the generalized mutual information and 

some questions related to Popper’s theory, complexity 

distortion theory, and rate-distortion theory.     

     II.  HARTLEY’S INFORMATION FORMULA AND A STORY OF 

COVERING FISH 

Hartley’s information formula is [3] 

I=logN,                                         (1) 

where I denotes the information conveyed by the occurrence 

of one of  N events with equal probability. If a message y 

tells that uncertain extension changes from N1  to N2, then 

information conveyed by y is  

Ir=I1-I2=logN1-logN2=log(N1/N2).                (2) 

We call (2) relative information formula. Before 

discussing its properties, Let’s hear a story about covering 

fish with fish covers.   

 
Figure 1: Fish-covering model for relative information Ir. 
 

Fish covers are made of bamboo. A fish cover looks like a 

hemisphere with a round hole at top for human hand to catch 

fish. Fish covers are suitable for catching fish in adlittoral 

pond. When I was a teenage, after watching peasants catch 

fish with fish covers, I decided to do the same thing. I found 

a basket with a hole at bottom and followed those peasants to 

catch fish. Fortunately, I successfully caught some fish, but 

no so much as the peasants did.  Then I compared my 

smaller basket with much bigger fish cover to get the 

following conclusions. 

The fish cover is bigger so that covering fish is easier; yet, 

catching fish with hands is more difficult. If a fish cover is 

big enough to cover the pond, it must be able to cover fish. 

However, this huge fish cover is useless because catching 
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fish with hands is as difficult as without fish cover. When 

one uses the basket or smaller fish cover to cover fish, 

though covering fish is more difficult, catching fish with 

hands is much easier.    

An uncertain event is alike a fish with random position in 

a pond. Let a sentence y=” Fish is covered”; y will convey 

information about the position of fish. Let N1 be the area of 

the pond, N2 be the area covered by the fish cover, then 

information conveyed by y is Ir=log( N1/ N2). The smaller  N2  

is than N1, the bigger the information amount is. This just 

reflects the advantage of the basket. If N2= N1，then I=0. 

This just tells us that covering fish is meaningless if the 

cover is as big as the pond. The above formula cannot tell the 

advantage of fish covers (covering fish with less failure) in 

comparison with the basket because in the classical 

information theory, there seems a hypothesis that the failure 

of covering fish never happens. The generalized information 

formula introduced bellow will contain “possible failure of 

covering fish”.    

III. IMPROVING THE FISH-COVERING FORMULA WITH 

PROBABILITY 

 Hartley’s information formula requires N events with 

equal probability P=1/N. Yet, the probabilities of events are 

unequal in general. For example, the fish stays in deep water 

in bigger probability and in shallow water in smaller 

probability. In these cases, we need to replace 1/N with 

probability P so that  

I=log(1/P)                                           (3) 

and 

Ir =log(P2/ P1).                                       (4) 

IV. RELATIVE INFORMATION FORMULA WITH  A SET AS 

CONDITION 

 Let X denote the random variable taking values from set 

A={x1, x2, …} of events, Y denote the random variable taking 

values from set B={y1, y2,…} of sentences or messages. For 

each yj, there is a subset Aj  of A and yj =“xi ∈Aj ”, which 
can be cursorily understood as “Fish xi is in cover Aj ” . Then 

P1 above becomes P(xi),  P2 becomes P(xi|xi ∈Aj). We 

simply denote P(xi|xi ∈Aj) by  P(xi|Aj), which is conditional 
probability with a set as condition. Hence, the above relative 

information formula becomes 

)](/)|(log[);( ijiji xPAxPyxI = .                (5) 

For convenience, we call this formula as the fish-covering 

information formula.  

Note that the most important thing is generally P(xi|Aj) ≠
P(xi |yj), because  

P(xi|yj)= P(xi|“xi ∈Aj”)=P(xi |“xi ∈Aj” is reported); 

yet,  

P(xi|Aj)= P(xi|xi ∈Aj)=P(xi |“xi ∈Aj” is true),  

where yj may be an incorrect reading datum, a wrong 

message, or a lie, yet, xi ∈Aj means that yj  must be correct. 

If they are always equal, then formula (5) will become 

classical information formula  

)](/)|(log[);( ijiji xPyxPyxI = ,               (6) 

whose average is just Shannon mutual information [11]. 

V. BAYESIAN FORMULA FOR THE FISH-COVERING 

INFORMATION FORMULA 

Let the feature function of set Aj   be  Q(Aj|xi) ∈{0,1}. 

According to Bayesian formula, there is  

P(xi |Aj)=Q(Aj | xi )P(xi )/Q(Aj ),                  (7) 

where ∑=
i

ijij xAQxPAQ )|()()( . From (5) and (7), we have  
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which (illustrated by Figure 2) is the transition from classical 

information formula to generalized information formula. 

 
Figure 2: Illustration of fish-covering information formula 

related to Bayesian formula. 

 

Let us use a thermometer to explain how to use the fish-

covering information formula to measure metrical 

information. 

The reading datum of a thermometer may be considered to 

be reporting sentence yj ∈ B={y1, y2,…} ， and real 

temperature as the fish position xi ∈A={x1, x2, …}. Let yj 

=“xi ∈Aj”, and Aj = [xj-△ x, xj+△ x] according to the 
resolution of the thermometer and eyes' visual discrimination. 

Hence, we can use the fish-covering information formula to 

measure thermometric information. 

VI. GENERALIZED INFORMATION FORMULA WITH A FUZZY 

SET AS CONDITION 

Information conveyed by a reading datum of thermometer 

and information conveyed by a forecast “The rainfall will be 

about 10 mm” are the same in essence. Using a clear set as 

condition as above is not good enough because the 

information amount should change with xi continuously. We 

wish that the bigger the error (i.e. xi-xj ), the less the 
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information. Now, using a fuzzy set to replace the clear set as 

condition, we can realize this purpose (see Figure 4). 

Now, we consider yj to be sentence “X  is xj ” (or say yj 

= jx̂ ).  For a fuzzy set Aj whose feature function Q(Aj|xi) 

takes value from [0, 1] and Q(Aj|xi) can be considered to be 

confusing probability of xi  with xj. If i=j, then the confusing 

probability reaches its maximum 1. 

Actually, the confusing probability Q(Aj|xi) is only 

different parlance of the membership grade of xi in fuzzy set 

Aj or the logical probability of proposition yj (xi). There is 

Q(Aj|xi)=feature function of Aj 

=confusing probability or similarity of xi with xj 

=membership grade of xi in Aj  

=logical probability or creditability of proposition yj(xi ) 

The discrimination of human sense organs, such as visual 

discrimination for gray levels of pixels of images, can also 

be described by confusing probability functions. In these 

cases, a sensation can be considered to be a reading datum 

yj= jx̂ of the thermometer. The visual discrimination function 

of xj is Q(Aj|xi), i=1, 2,… where Aj is a fuzzy set containing 

all xi that are confused with xj. We may use the statistic of 

random clear sets to obtain this function [13]. 

 
Figure 3: Confusing probability function from clear sets. 

 

First we do many times experiments to get  the clear 

confusing sets sjk, k=1, 2…n, by putting xj on one side of a 

screen and changing xi on another side of the screen for eyes 

to discern. And then we calculate    

,)|(
1
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Now, by replacing a clear set with a fuzzy set as condition, 

we get the generalized information formula: 
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It looks the same as the fish-covering information formula 

(8), but Q(Aj|xi) ∈[0,1] instead of Q(Aj|xi) ∈{0,1}. And also, 

this formula allows wrong reading data or messages, bad 

forecasts, or lies which convey negative information. The 

generalized information formula can be understood as fish-

covering information formula with fuzzy cover. Because of 

fuzziness, generally, the amount of negative information is 

finite. The property of the formula can be illustrated by 

Figure 4. 

Figure 4 tells us that when a reading datum or a sensation 

yj= jx̂  is provided, the bigger the difference of xi from xj, the 

less the information; and the less the Q(Aj), the bigger the 

absolute value of information. From this formula, we can 

conclude that information amount not only depends on the 

correctness of reflection, but also depends on the precision of 

reflection. 

 
Figure 4: Generalized information formula for measuring 

metrical information, sensory information, and number-

forecasting information. 

VII. COHERENCE OF THE SEMANTIC INFORMATION MEASURE 

AND POPPER’S CRITERION OF ADVANCE OF KNOWLEDGE 

The generalized information formula can also be used to 

measure semantic information in general, such as 

information from weather forecast “Tomorrow will be rainy 

or heavy rainy”.  We may assume that for any proposition yj, 

there is a Plato’s idea xj that makes Q(Aj|xj)=1. The idea xj is 

probably not in Aj. Hence, any logical condition probability  

Q(Aj|xi) can be considered to be the confusing probability of 

xi with the idea xj.  

From my view-point, forecasting information is more 

general information in comparison with descriptive 

information. If a forecast is always correct, then the 

forecasting information will become descriptive information.  

About the criterion of advance of scientific theory, 

philosopher Karl Popper wrote:     

“The criterion of relative potential satisfactoriness… 

characterizes as preferable the theory which tell us more; 

that is to say, the theory which contains the greater amount 

of empirical information or content; which is logically strong; 

which has the greater explanatory and predictive power; and 

which can therefore be more severely tested by comparing 

predicted facts with observations. In short, we prefer an 

interesting, daring, and highly informative theory to a trivial 

one.” ( in [10], pp. 250) 

Clearly, Popper used information as the criterion to value 

the advance of scientific theories. According to Popper’s 

theory, the more easily a proposition is falsified logically and 

the more it can go through facts (in my words, the less the 

prior logical probability Q(Aj) is, and the bigger the posterior 

logical probability Q(Aj|xi) is ), the more information it 

conveys and the more meaningful it is. Contrarily, a 

proposition that can not be falsified logically (in my words, 

Q(Aj|xi) ＝ Q(Aj) ＝ 1) conveys no information and is 

insignificant in science. Obviously, the generalized 

information measure is very coherent with Popper’s 

information criterion; the generalized information formula 

functions as a bride between Shannon’s information theory 

and Popper’s knowledge evolution theory. 

VIII. GENERALIZED FULLBACK’S INFORMATION AND 

GENERALIZED MUTUAL INFORMATION 

Calculating the average of I(xi; yj) in (10), we have 

generalized Fullback’s information formula for given yj: 
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Actually, the probabilities on the right of the log should be 

prior probabilities or logical probabilities, the probability on 

the left of the log should be posterior probability. Since now 

we differentiate two kinds of probabilities and use Q(.) for 

those  probabilities after log. Hence the above formula 

becomes 

)(

)|(
log)|();(

i

ji

i

jij
xQ

AxQ
yxPyXI ∑= .            (12) 

We can prove that as Q(X|Aj)= P(X|Aj), which means 

subjective probability forecasts conforms to objective 

statistic, I(X; yj) reaches its maximum. The more different the 

Q(X) is from P(X|Aj), which means that the facts are more 

unexpected, the bigger the I(X; yj) is. This formula also 

conforms to Popper’s theory. 

Further, we have generalized mutual information formula 
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where 
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I call H(X) forecasting entropy, which reflects the average 

coding length when we economically encode X according to 

Q(X) while real source is P(X), and reaches its minimum as 

Q(X)= P(X).  I call  H(X|Y) posterior forecasting entropy, call 

H(Y)  generalized entropy, and call H(Y|X)  generalized 

condition entropy or fuzzy entropy [6].  

I think that the generalized information is subjective 

information and Shannon information is objective 

information. If two weather forecasters always provide 

opposite forecasts and one is always correct and another is 

always incorrect. They convey the same objective 

information, but the different subjective information. If 

Q(X)= P(X)  and Q(X|Aj)= P(X|yj) for each j, which means 

subjective forecasts conform to objective facts, then the 

subjective mutual information equals objective mutual 

information.     

IX.  RATE-OF-LIMITING-ERRORS AND ITS RELATION TO 

COMPLEXITY-DISTORTION 

In [5], I defined rate-of-limiting-errors, which is similar to 

complexity distortion [2]. The difference is that the error-

limiting condition for rate-of-limiting-errors is a group of 

sets or fuzzy sets AJ= { A1,  A2…} instead of a group of balls 

with the same size and clear boundaries for complexity 

distortion. 

We know that the color space of digital images is visually 

ununiform and human eyes’ discrimination is fuzzy. So, in 

some cases, such as coding for digital images, using size-

unequal balls or fuzzy balls as limiting condition will be 

more reasonable.  

Assume P(Y) is a source; encode Y into X; allow yj is 

encoded into any xj in  clear set Aj,  j=1, 2…; then the 

minimum of Shannon mutual information for different P(X|Y) 

is defined as  rate-of-limiting-errors R(AJ).  

Interestingly, it can be proved that R(AJ) is just equal to 

the generalized entropy H(Y) [5]. To realize this rate, there 

must be P(X|yj)= Q(X|Aj) for each j.  Furthermore, when the 

limiting sets are fuzzy, i.e. P(X|yj) ≤ Q(X|Aj) for each j as 

Q(Aj|xi)<1, there is 
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To realize this rate, there must be P(X)=Q(X) and P(X|yj)= 

Q(X|Aj) for each j so that Shannon’s mutual information 

equals the generalized mutual information.  

Now, from the view-point of the complexity distortion 

theory, the generalized entropy H(Y) is just prior complexity, 

the fuzzy entropy H(Y|X) is just the posterior complexity, and 

I(X;Y) is the reduced complexity.   

   X. RATE FIDELITY THEORY:  REFORMED RATE DISTORTION 

THEORY 

Actually, Shannon mentioned fidelity criterion for lossy 

coding before. He used the distortion as the criterion for 

optimizing lossy coding because the fidelity criterion is hard 

to be formulated.  However, distortion is not a good criterion 

in most cases. 

How do we value a person? We value him according to 

not only his errors but also his contributions. For this reason, 

I replace the error function dij=d(xi, yj) with generalized 

information Iij= I(xi; yj) and distortion d(X, Y) with 

generalized mutual information I(X; Y) as criterion to search 

the minimum of Shannon mutual information Is(X; Y) for 

given P(X)=Q(X) and the lower limit G of I(X; Y).  I call this 

criterion  the fidelity criterion, call the minimum the rate-

fidelity function R(G), and call the reformed theory the rate 

fidelity theory.  

In a way similar to that in the classical information theory 

[1], we can obtain the expression of function R(G) with 

parameter s: 
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where s=dR/dG indicates the slope of function R(G) ( see 

Figure 5) and )exp()(/1 ij

j

ji sIyP∑=λ .  

We define a group of sets BI= {B1,  B2…}, where  B1,  

B2… are subset of  B={y1, y2,…}, by  fuzzy feature function 

mAQxAQmsIyBQ s
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where m is the maximum of exp(sIij); then from (19) and (20) 

we have   
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This function is just the rate-of-limiting-errors with a 

group of fuzzy sets BI={B1,  B2…} as limiting condition 

while coding X in A into Y in B. From this formula, we can 

find there is profound relationship between rate-of-limiting-

errors and rate-fidelity (or rate-distortion). In the above 

formulas, if we replace Iij with dij=d(xi, yj), (21) is also 

tenable. So, actually rate-distortion function can be 

expressed by a formula of generalized mutual information.    

In [7], I defined information value V by the increment of 

growing speed of fund  because of information, and 

suggested to use the information value as criterion to 

optimize communication in some cases to get function rate-

value R(V), which is also meaningful. 

XI. RATE-FIDELITY FUNCTION FOR OPTIMIZING IMAGE 

COMMUNICATION 

Now let’s examine the relationships among subjectively 

visual information, visual discrimination, and objective   

information. For simplicity, we consider the information 

provided by different gray levels of pixels of images (see [4] 

for details). 

Let the gray level of quantized pixel be a source and the 

gray level is xi=i, i=0, 1... b =2
k -1 with normal probability 

distribution whose expectation=b/2 and standard deviation= 

b/8. Assume that after decoding, the pixel also has gray level 

yj=j=0, 1... b; the perception caused by yj is also denoted by 

yj; and discrimination function or confusing probability 

function  of xj  is  

)]2/()(exp[)|( 22 djXXAQ j −−=
        (22) 

where d is discrimination parameter. The smaller the d, the 

higher the discrimination.  

 
Figure 5. Relationship between d and R(G) for b=63. 

 

Figure 5 indicates that when R=0, G<0, which means that 

if a coded image has nothing to do with the original image, 

we still believe it reflects the original image, then the 

information will be negative. When G=-2, R>0, which means 

that certain objective information is necessary when one uses 

lies to deceive his or her enemy to some extent; or say, lies 

against facts are more terrible than lies according to nothing. 

The each line of function R(G) is tangent with the line R=G, 

which means there is a matching point at which objective 

information is equal to subjective information, and the higher 

the discrimination (the less the d), the bigger the matching 

information amount. The slope of R(G) becomes bigger and 

bigger with G increasing, which tell us that for given 

discrimination, it is limited to increase subjective 

information.  

Figure 6 tells us that for given discrimination, there exists 

the optimal quantizing-bit k' so that the matching value of G 

and R reaches the maximum. If k<k', the matching 

information increases with k; if k>k', the matching 

information no longer increases with k. This means that too 

high resolution of images is unnecessary or uneconomical for 

given visual discrimination. 

 
Figure 6: Relationship between matching value of R with 

G, discrimination parameter d, and quantizing bit k. 

XII. CONCLUSIONS 

 This paper has deduced generalized information formula 

for measuring subjective information by replacing condition 

probability with logical condition probability, and improved 

the rate-distortion theory into the rate fidelity theory by 

replacing Shannon distortion with subjective mutual 

information. It has also discussed the rate-fidelity function 

related to visual discrimination and quantizing grades of 

images, and gotten some meaningful results. 
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