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Abstract. For given age population prior distribution P(x) and the posterior dis-
tribution P(x|adult), how do we obtain the denotation of a label y=“adult”? With 
the denotation, e.g., the membership function of class {Adult}, we can make new 
probability prediction, e.g., likelihood function, for changed P(x). However, ex-
isting methods including Likelihood Method and Bayesian Inference cannot re-
solve this problem. For this purpose, the author proposes and proves the third 
kind of Bayes’ Theorem, which includes two asymmetrical Bayes’ formulas. The 
membership function so obtained is equivalent to that from random set statistics 
proposed by Peizhuang Wang. When samples are very big so that there are con-
tinuous sampling distributions P(x, y), we can directly derive a group of mem-
bership functions by a new Bayes formula. If samples are not big enough, we can 
use the semantic information formula, a generalized Kullback-Leibler formula, 
to optimize the membership functions by sampling distributions. The semantic 
information criterion is compatible with maximum likelihood criterion and Reg-
ularized Least Squares (RLS) criterion. In comparison with the likelihood func-
tion and the Bayesian posterior, the membership function so obtained as the pre-
dictive model can be used with new source P(x) to produce new likelihood func-
tion for better generalization performance. New Bayes’ formulas and the seman-
tic information method can be applied to machine learning. The paper simply 
introduces their applications to 1) multi-label classifications; 2) maximum mu-
tual information classifications for unseen instances; and 3) mixture models. It is 
shown that new methods are very simple and reliable. It seems that the member-
ship function so obtained can bridge the gap between logic and probability. With 
this membership function, we can develop a new mathematical tool: Logical 
Bayesian Inference.   

Keywords: Bayes’ theorem, Membership function, Likelihood function, Se-
mantic information, Machine learning, Multi-label classification, Natural lan-
guage processing, Logical probability.  
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1 Introduction 

The main task of machine learning is classification. The membership function proposed 
by Zadeh [1] indicates the membership relation of different instances to a fuzzy class 
and hence should be a good tool for machine learning. The relationship between statis-
tical probabilities and membership functions has been discussed for a long time [2-6].  
Peizhuang Wang [2] explained the membership function with random set falling 
shadow. Thomas and others [3, 4] proposed a Bayes’ formula to produce a likelihood 
function from a membership function and an instance prior distribution (e.g., a source).  
The author used Wang’s random set falling shadow theory to derived the above Bayes’ 
formula and used it to set up a semantic information theory [7-9]. However, existing 
methods still cannot obtain a membership function, which is compatible with random 
set statistics, from a likelihood function or a sampling distribution directly. 

We use an example to explain this problem. Assume there is age population prior 
distribution P(x) and the posterior distribution P(x|adult) or P(x|“adult” is true), which 
are continuous. How do we obtain the denotation of “adult” (see Fig. 1)? With the de-
notation, e.g., the feature function or the membership function of class {Adult}, we can 
make new probability prediction or produce new likelihood function after P(x) is 
changed. Can we obtain the feature function of set {Adult}？If the set {Adult} is fuzzy, 
can we obtain the membership function of the fuzzy set {Adult}? 

 

Fig. 1.    Solving the denotation of “Adult” and the posterior distribution P’(x|y1 is true). 

 Further, if we only know a not big enough sample with unsmooth or discontinuous 
distribution P(x, y), can we construct a smooth membership function with parameters 
as we do for a likelihood function, and train it with the sampling distribution? This is a 
label learning issue. 

Furthermore, given a group of membership functions and a changed P(x), how do 
we classify the instance space with maximum likelihood criterion or maximum mutual 
information criterion? This is a multi-label classification issue. 

In this paper, to resolve above problems with membership functions, we first propose 
the third kind of Bayes’ theorem and prove that the membership function obtained from 
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the new Bayes’ formula is equivalent to that obtained from the random set statistics. 
Two resolve the above two issues, we use the semantic information method [11-13].  

In next section, we introduce new mathematical methods. In Section 3, we simply 
introduce the applications of the new methods to multi-label classification, maximum 
mutual information classifications for unseen instances, and mixture models. Section 4 
provides discussions. The last section is the summary.  

2 Mathematical Methods 

2.1 Distinguishing Statistical Probability and Logical Probability 

Definition 1 Let U denote an instance set, and X denote a discrete random variable 
taking a value x from U. That means X∈U={x1, x2, …}. Let V denote the set of se-
lectable labels, including some atomic and compound labels and let Y∈V={y1, y2, …}.  

Definition 2 A label yj is also a predicate yj(X)= “X∈Aj.” For each yj, U has a subset 
of Aj, every instance of which makes yj true. Let P(Y=yj) denote the statistical probabil-
ity of yj, and P(X∈Aj) denote the Logical Probability (LP) of yj. For simplicity, let 
P(yj)= P(Y=yj) and T(yj)=T(Aj)= P(X∈Aj). 

We call P(X∈Aj) the logical probability because according to Tarski’s theory of 
truth [14], P(X∈Aj)=P(“X∈Aj” is true)=P(yj is true). Hence the conditional LP of yj 
for given X is the feature function of Aj and the truth function of yj. We denote it with 
T(Aj|X). Hence there is 

( ) ( ) ( | )j i j i
i

T A P x T A x          (2.1) 

According to Davidson’s truth-conditional semantics [15], T(Aj|X) ascertains the se-
mantic meaning of yj. Note that statistical probability distributions, such as P(Y), 
P(Y|xi), P(X), and P(X|yj), are normalized; however, LP distributions are not normal-
ized. In general, T(A1)+T(A2)+…+T(An)>1; T(A1|xi)+T(A2|xi)+…+T(An|xi)>1. 

If Aj is fuzzy, T(Aj|X) becomes the membership function, and T(Aj) is also the fuzzy 
event probability defined by Zadeh [16]. For fuzzy sets, we use θj to replace Aj. Then 
T(θj|X) becomes the membership function of θj. There is  

 ( ) ( | ) ( | )
j j jm X T X T y X    (2.2) 

We can also treat θj as a sub-model of a predictive model θ. In this paper, likelihood 
function P(X|θj) is equal to P(X|yj; θ) in popular likelihood method. 

2.2 The Three Kinds of Bayes’ Theorems  

There are three kinds of Bayes’ theorem, which are used by Bayes [17], Shannon [18], 
and the author respectively. 
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Bayes’ Theorem I (used by Bayes): Assume that sets A, B∈2U, Ac is the comple-
mentary set of A, T(A)=P(X∈A), and T(B)= P(X∈B). Then 

 T(B|A)=T(A|B)T(B)/T(A), T(A)= T(A|B)T(B)+ T(A|Bc)T(Bc) (2.3) 

There is also an asymmetrical formula for T(A|B). Note there are only one random var-
iable X and two logical probabilities. 

Bayes’ Theorem II (used by Shannon):  

( | ) ( | ) ( ) / ( ),  ( ) ( ) ( | )i j j i i j j i j i
i

P x y P y x P x P y P y P x P y x    (2.4)  

There is also an asymmetrical formula for P(yj|xi). Note there are two random variables 
and two statistical probabilities.  

Bayes’ Theorem III: Assume that P(X)=P(X=any in U) and T(θj )=P(X∈θj). Then 

( | ) ( | ) ( ) / ( )  ( ) ( ) ( | )j j j j i j i
i

P X T X P X T T P x T x     ，    (2.5) 

( | )= ( | ) ( ) / ( ),  ( ) 1/ max( ( | ) / ( ))j j j j jT X P X T P X T P X P X      (2.6) 

The two formulas are asymmetrical because there is a statistical probability and a logi-
cal probability. T(θj) in (2.5) may be call longitudinally normalizing constant.  

The Proof of Bayes’ Theorem III: Assume the joint probability P(X, θj)= 
P(X=any, X∈θj), then P(X|θj)T(θj) = P(X=any, X∈θj)= T(θj|X)P(X). Hence there is  

( | ) ( ) ( | ) / ( ),  ( | ) ( ) ( | ) / ( )j j j j j jP X P X T X T T X T P X P X        

Since P(X|Aj) is horizontally normalized, T(θj)=∑i P(xi) T(θj|xi). Since T(θj|X) is longi-
tudinally normalized and has the maximum 1, there is  

 1= max[T(θj)P(X|θj)/P(X)]= T(θj)max[P(X|θj)/P(X)] 

Hence T(θj)=1/max[P(X|θj)/P(X)]. QED.  
Equation (2.5) can be directly written in  

 ( | )=[ ( | ) / ( )] / max[ ( | ) / ( )]j j jT X P X P X P X P X    (2.7) 

By this formula, we can obtain the denotation of “Adult” and the posterior distribution 
P’(x|y1 is true) as shown in Fig. 1 where the set is not fuzzy. 

2.3 Relationships between Likelihood functions, Membership Functions, and 
Sampling Distributions 

In Shannon’s information theory [18], P(X) is called the source and P(Y) is called the 
destination, the transition probability matrix P(Y|X) is called the channel. A Shannon’s 
channel consists of a group of transition probability functions: P(yj|X),  j=1, 2, …, n. 
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P(yj|X) has two important properties: 1) It can be used for Bayes’ prediction to get 
P(X|yj); after P(X) becomes P’(X), P(yj|X) still works; 2) P(yj|X) by a constant k can 
make the same probability prediction because 

'( ) ( | ) '( ) ( | )
= '( | )

'( ) ( | ) '( ) ( | )
j j

j
i j i i j i

i i

P X kP y X P X P y X
P X y

P x kP y x P x P y x


 
     (2.8) 

Similarly, a semantic channel consists of a group of membership functions: T(θ|X): 
T(θj|X),  j=1, 2, …, n. According to (2.8), if T(θj|X)∝P(yj|X), there is  P(X|θj)=P(X|yj). 
Hence the optimized membership function is 

 T*(θj|X)=P(yj|X)/max(P(yj|X))  (2.9) 

The relationships between membership functions, likelihood functions, and several 
probability distributions are: 

 T*(θj|X)= [P*(X|θj)/P(X|)]/max[P*(X|θj)/P(X|)] 

  = [P(X|yj)/P(X|)]/max[P(X|yj)/P(X|)]=P(yj|X)/max(P(yj|X))   (2.10) 

2.4 The Consistency of the Bayes’ Theorem III and Random Set Statistics 

We can prove that the membership function derived from (2.10) is the same as that 
from the random set statistics [2].  

Assume that a Shannon channel P(Y|X) is obtained from a big sample D where whose 
size is N→∞; X is equiprobable; there are N/m examples (xi; yj) for every xi with differ-
ent yj. We pick out all examples with yj. Assume x’ is the most instance in these exam-
ples. We denote it by xj*, whose number is Nj*. Existing multi-instance multi-label 
learning method [19] reminds us that we can merge these examples with yj into Nj* 
multi-instance examples Sk=(xk1, xk2,…; yj), k=1, 2,…,Nj*, every one of which contains 
xj*. Then we can treat Sk as a set-value taken by the random set. Let its feature function 
be denoted by Fk(X).  

 

Fig. 2. The Bayes’ Theorem III is compatible with the random sets falling shadow theory. 
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According to Wang’s random set falling shadow theory [2], the membership func-
tion of θj is 

  
*

1

1
( ) ( )

*

j

j

N

k
kj

m X F X
N



           (2.11) 

According to classical statistics, the transition probability function of yj is 

 
*

1

1
( | ) ( )

( / )

jN

j k
k

P y X F X
N m 

    (2.12) 

Comparing the above two formulas, we have  

 
( ) ( | ) / [ * /( / )]

           = ( | ) / max[ ( | )]= *( | )
j j j

j j j

m X P y X N N m

P y X P y X T X






 (2.13) 

If X is not equiprobable, we can randomly remove some examples to get an equi-
probable sample. Its P(Y|X) is the same, and hence the conclusion is the same. 

2.5 Optimizing Membership Functions with Unsmooth or Discontinuous 
Sampling Distributions 

If sampling distributions are unsmooth or discontinuous, but we wish that membership 
functions are smooth, then we can use the semantic information method to optimize the 
membership function. 

The (amount of) semantic information conveyed by yj about xi is defined with log-
normalized-likelihood [9]:  

( | ) ( | )
( ; ) log = log

( ) ( )
i j j i

i j
i j

P x T x
I x

P x T

 



       (2.14) 

For an unbiased estimation yj, its truth function may be expressed by a Gaussian distri-
bution without the coefficient: T(θj|X)=exp[-(X-xj)2/(2d2)]. Hence 

 I(xi; θj)=log[1/T(θj)]-(X-xj)2/(2d2)  (2.15) 

The log[1/T(θj)] is Bar-Hillel-Carnap’s semantic information measure [20]. Eq. (2.15) 
tells us that the larger the deviation is, the less information there is; the less the logical 
probability is, the more information there is; and, a wrong estimation may convey neg-
ative information. These conclusions accord with Popper’s thought [21]. 

To average I(xi; θj), we have 

( | ) ( | )
( ; ) ( | ) log = ( | ) log

( ) ( )
i j j i

j i j i j
i ii j

P x T x
I X P x y P x y

P x T

 



        (2.16) 
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where P(xi|yj) (i=1,2,…) is the sampling distribution, which may be unsmooth or dis-
continuous. Hence, the optimized membership function is  

( | ) ( | )

( | )
*( | ) arg max ( ; )=arg max ( | ) log

( )j j

j i
j j i j

T X T X
i j

T x
T X I X P x y

T 


 


   (2.17) 

It is easy to prove that when P(X|θj)=P(X|yj) or T(θj|X)∝P(yj|X), I(X;θj) reaches its 
maximum and is equal to the Kullback-Leibler information. When P(yj|X) is known 
and P(X) is unknown, we may assume X is equiprobable to have  

 
( | ) ( | )

( | ) ( | )
*( | ) arg max ( ; )= arg max log

( | ) ( | )j j

j i j i
j j

T X T X i j k j k
k k

P y x T x
T X I X

P y x T x 


 


  

  

(2.18) 

To average I(xi; θj) in（2.15）for different X and Y, we have  

 2 2

( ; ) ( ) ( | )

            ( ) log ( ) ( ) 2) /, (j j i j i
j j i

j j

I X H H X

P y T P dx x xy

  





   



    (2.19) 

It is easy to find that the Maximum Semantic Information (MSI) criterion is a special 
Regularized Least Squares (RLS) criterion. H(θ|X) is the mean squared error, and H(θ) 
is the negative regularization term.  

3 Applications to Machine Learning 

3.1 Multi-Label Learning and Classification 

There have been many valuable studies in Multi-label learning and classification [22-
24]. In popular methods, the learning and the classification are made by the same agent. 
However, from the viewpoint of semantic communication, the sender’s classification 
and the receiver’s logical classification are different. The receiver learns from a sample 
to obtain labels’ denotations, e. g., membership functions, whereas the sender needs, 
for a given instance, to select a label with the most information. The sender partitions 
the instance space whereas the receiver does not. 

Section 2.5 has discussed how to obtain optimized membership functions, which 
makes multi-label learning much easier because the learning is naturally converted into 
several single label learning. We may improve Binary Relevance method [24] to opti-
mize the membership function of a label with both positive and negative examples by 

 
( | )

( | )

*( | ) arg max[ ( ; ) ( ; )]

( | ) 1- ( | )
= arg max [ ( | ) log ( | ) log ]

( ) 1- ( )

j

j

c
j j j

T X

j i j i
i j i j

T X i j j

T X I X I X

T x T x
P x y P x y

T T





  

 
 

 


  (3.1) 
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where T*(θj|xi) is only affected by P(yj|X) and P(yj’|X). For a given label, this method 
divides all instances into three kinds: the positive, the negative, and the unclear. 
T*(θj|xi) is not affected by unclear instances. However, popular One-vs-Rest or Binary 
Relevance method [24, 25] divides all instances into two kinds: the positive and the 
negative, for every label, and hence it needs a lot of time to prepare samples.  

This binary logical learning allows the second part of Eq. (3.1) to be 0.  Any big 
enough sample with distribution P(X, Y) may be used for the membership function. 

Now we discuss multi-label classifications with maximum semantic information cri-
terion. For a visible instance X, the label sender selects yj by the classifier 

( | )
*= ( ) arg max log ( ; )= arg max log

( )j j

j
j j i

y y j

T X
y h X I x

T





     (3.2) 

This classifier produces a noiseless Shannon channel. Using T(θj) can overcome the 
class-imbalance problem [22]. If T(θj|X)∈{0,1}, the above semantic information meas-
ure becomes Bar-Hillel and Carnap’s information measure [20]; the classifier becomes 

with ( | ) 1 with ( | ) 1
*= ( ) arg max log[1/ ( )] arg min ( )

j j j j

j j j
y T A X y T A X

y h X T A T A
 

     (3.3) 

It means that we should select a label with the least logical probability and hence with 
the richest connotation. The above classifier encourages us to select a compound label 
such as y1 and y2 and y3' (' means negation). Unlike canonical Binary Relevance method 
[25], it does not add label “Adult”  or “Non-youth” to an example with label “Old 
person”.  See [14] for details about the new method for multi-label classifications. 

3.2 Maximum Mutual Information Classifications for Unseen Instances 

For unseen instance classifications, we assume that observed condition is Z∈C={z1, z2, 
…}; the classifier is Y=f(Z); a true class or true label is X∈U={x1, x2, …}; a sample is 
D={(x(t); z(t))|t=1, 2, …, N; X(t)∈U; z(t)∈C}. From D, we can obtain P(X, Z). If D is 
not big enough, we may use the likelihood method to obtain P(X, Z) with parameters. 
The aim is to solve the optimal partition of C. The problem is that Shannon’s channel 
is not fixed and also needs optimization. Hence, we need semi-supersized learning 
method. We may use the Channels’ Matching (CM) iteration algorithm [12,13]. 

Let Cj be a subset of C and yj=f(Z|Z∈Cj). Hence S={C1, C2, …} is a partition of C. 
Our aim is, for given P(X, Z) from D, to find optimized S, which is 

 
( | )

* arg max ( ; | ) arg max ( ) ( | ) log
( )
j i

j i j
S S j i j

T x
S I X S P C P x C

T





    (3.4) 

First, we obtain the Shannon channel for given S: 

 ( | ) ( | ),  1, 2,...,
k j

j k
z C

P y X P z X j n


    (3.5) 
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From this Shannon’s channel, we can obtain the semantic channel T(θ|X) in numbers or 
with parameters. For given Z, we have conditional semantic information 

   
( | )

( ; | ) ( | ) log
( )
j i

i j i
i j

T X
I X Z P X Z

T





   (3.6) 

Then let the Shannon channel match the semantic channel by 

 ( ) arg max ( ; | )
j

j j
y

y f Z I X Z  ,  j=1, 2, …, n (3.7) 

Repeat (3.5)-(3.7) until S does not change. The convergent S is S* we seek. Some iter-
ative examples show that the above algorithm is fast and reliable. The convergence can 
be proved with the help of the R(G) function [12]. 

3.3 Mixture Models 

Assume a sampling distribution P(X) is produced by two or several conditional proba-
bility functions P*(X|yj) （j=1,2,…,n）, where P*(X|yj) is some kind of function such 
as Gaussian distribution. We only know n, without knowing P(Y). We need to find P(Y) 
and model parameters θ so that the predicted distribution, denoted by Pθ(X), is as close 
to P(X) as possible, e. g., the relative entropy or Kullback-Leibler divergence H(P||Pθ)=
∑iP(xi)log[P(xi)/Pθ(xi)] is close to 0.  

The Expectation-Maximization (EM) algorithm and its improved versions [23, 24] 
are popular for solving mixture models. We can improve the EM algorithm or Maximi-
zation-Maximization algorithm [24] by the CM algorithm as follows: 

Left-step a: Construct Shannon’s channel by 
( | ) ( ) ( | ) / ( )

( ) ( ( | )

j j j

j j
j

P y X P y P X P X

P X P y X











 ）
, j=1, 2, …, n  (3.8) 

This formula has been used in the E-step of the EM algorithm.  
Left-step b Use the following equation to obtain a new P(Y) repeatedly until the 

inner iteration converges: 
( ) ( ) ( | )

( | )
( ) ( ), 1, 2,...,

( ( | )

j i j i
i

i j
i j

i k i k
k

P y P x P y x

P x
P x P y j n

P y P x






 



  ）

   (3.9) 

If H(P||Pθ)is less than a small number, such as 0.001 bit, then end the iteration. 
Right-step: Optimize the parameters in the likelihood function P(X|θ) on the right 

of the following log to maximize the semantic mutual information: 
( | ) ( | )

( ; ) ( ) ( ) log
( ) ( )
i j i j

i j
i j i i

P x P x
I X P x P y

P x P x

 
     (3.10) 

Then go to Left-step a.  
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Fortunately, to prove H(P||Pθ)→0, we derived an important formula [25] 

 
( ), ( ), 

min ( || ) min ( ( ; ) ( ; ))= min ( ( ) ))
P Y P Y

H P P I X Y I X R G G  
     (3.11) 

where G is the semantic information and R(G) is the minimum Shannon’s mutual in-
formation for given G. In every step, H(P|| Pθ) is decreasing. In comparison with the 
EM algorithm, the CM algorithm has faster speed and clearer convergence reason [28].  

The package with Excel files and Word files illustrating the CM algorithm for mix-
ture models and maximum mutual information classifications can be obtained from 
http://survivor99.com/lcg/CM-iteration.zip. These Excel files also contain the data of 
iterative processes. 

4 Discussions 

4.1 The Significance to the Unification of Logic and Probability 

It has been being an important issue to unify logic and probability [21, 28, 29]. Alt-
hough logical probability has been discussed for a long time, people defined logical 
probability only with classical sets and hence truth functions can only be 0 or 1. In this 
way, it is hard to unify statistical probability and logical probability. 
 Zadeh proposed fuzzy sets and membership functions and explained a membership 
function as the truth function of a hypothesis [1]. This theory is an important advance 
because the truth function is between 0 and 1 and hence is closer to statistical probabil-
ity.  Peizhuang Wang [2] and others also made important advances in setting up rela-
tionship between statistics and fuzzy logic. However, there is still a gap between statis-
tical probability and fuzzy logic because we cannot convert a sampling distribution such 
as P(yj|X) into a membership function reasonably. And, it is still unclear to derive mem-
bership functions from likelihood functions. It seems that the Bayes’ Theorem III and 
the semantic information method can bridge this gap well.    

4.2 From Bayesian Inference to Logical Bayesian Inference 

In comparison with the likelihood function P(X|θj) and the Bayesian posterior P(θ|X) 
[30], the membership function T(θj|X) so obtained seems to be a better tool for machine 
learning because the main task of machine learning is classification. And, a fuzzy set 
indicates a fuzzy class and a membership function indicates the denotation of a label. 
The learning is just for the denotation of a label. 
 An important advantage of a group of membership functions, or a semantic channel, 
as a predictive model is that when the source P(X) is changed, this model still works 
well and hence has good generalization performance [14].  
 The above methods for membership functions may be called Logical Bayesian In-
ference [31], an improved version of Bayesian inference.  
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5 Summary 

This paper proposed and proved the third kind of Bayes’ theorem including two asym-
metrical formulas for transform between likelihood functions and the membership func-
tions. Letting a semantic channel match a Shannon’s channel, we can obtain a group of 
optimized membership functions from a sampling distribution. If the sampling distri-
bution is unsmooth or discontinuous, we can obtain a group of optimized membership 
functions by the semantic information formula. The paper introduced the applications 
of new methods to multi-label classification, maximum mutual information classifica-
tions, and mixture models. It discussed the significance of the new methods for mem-
bership functions to the unification of logic and probability. As a new and general tool, 
Logical Bayesian Inference was proposed. 
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