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Abstract. To solve the Maximum Mutual Information (MMI) and Maximum
Likelihood (ML) for tests, estimations, and mixture models, it is found that we
can obtain a new iterative algorithm by the Semantic Mutual Information
(SMI) and R(G) function proposed by Chenguang Lu (1993) (where R(G) func-
tion is an extension of information rate distortion function R(D), G is the lower
limit of the SMI, and R(G) represents the minimum R for given G). This paper
focus on mixture models. The SMI is defined by the average log normalized
likelihood. The likelihood function is produced from the truth function and the
prior by the semantic Bayesian inference. A group of truth functions constitute a
semantic channel. Letting the semantic channel and Shannon channel mutually
match and iterate, we can obtain the Shannon channel that maximizes the MMI
and the average log likelihood. Therefore, this iterative algorithm is called
Channels’Matching algorithm or the CM algorithm. It is proved that the relative
entropy between the sampling distribution and predicted distribution may be
equal to R − G. Hence, solving the maximum likelihood mixture model only
needs minimizing R − G, without needing Jensen’s inequality. The convergence
can be intuitively explained and proved by the R(G) function. Two iterative
examples of mixture models (which are demonstrated in an excel file) show that
the computation for the CM algorithm is simple. In most cases, the number of
iterations for convergence (as the relative entropy <0.001 bit) is about 5. The CM
algorithm is similar to the EM algorithm; however, the CM algorithm has better
convergence and more potential applications.

Keywords: Shannon channel � Semantic channel � Semantic information �
Likelihood � Mixture models � EM algorithm � Machine learning � Statistical
inference

1 Introduction

To obtain maximum likelihood mixture models, The EM algorithm [1] and the Newton
method [2] are often used. There have been many papers on applying or improving the
EM algorithm. Lu proposed the semantic information measure (SIM) and the
R(G) function in 1993 [3–5]. The R(G) function is an extension of Shannon’s infor-
mation rate distortion function R(D) [6, 7]. The R(G) means the minimum R for given
SIM G. It is found that using SIM and R(G) function, we can obtain a new iterative
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algorithm, i.e, Channels’ Matching algorithm (or the CM algorithm). Compared with
the EM algorithm, the CM algorithm proposed by this paper is seemly similar yet
essentially different1.

In this study, we use the sampling distribution instead of the sampling sequence.
Assume the sampling distribution is P(X) and the predicted distribution by the mixture
model is Q(X). The goal is to minimize the relative entropy or Kullback-Leibler
(KL) divergence H(Q||P) [8, 9]. With the semantic information method, we may prove
H(Q||P) = R(G) − G. Then, maximizing G and modifying R alternatively, we can
minimize H(Q||P).

We first introduce the semantic channel, semantic information measure, and R
(G) function in a way that is as compatible with the likelihood method as possible.
Then we discuss how the CM algorithm is applied to mixture models. Finally, we
compare the CM algorithm with the EM algorithm to show the advantages of the CM
algorithm.

2 Semantic Channel, Semantic Information Measure,
and the R(G) Function

2.1 From the Shannon Channel to the Semantic Channel

First, we introduce the Shannon channel.
Let X be a discrete random variable representing a fact with alphabet A = {x1, x2,

…, xm}, and let Y be a discrete random variable representing a message with alphabet
B = {y1, y2, …, yn}. A Shannon channel is composed of a group of transition proba-
bility functions [6]: P(yj|X), j = 1, 2, …, n.

In terms of hypothesis-testing, X is a sample point and Y is a hypothesis or a model
label. We need a sample sequence or sampling distribution P(X|.) to test a hypothesis to
see how accurate it is.

Let ϴ be a random variable for a predictive model, and let hj be a value taken by ϴ
when Y = yj. The semantic meaning of a predicate yj(X) is defined by hj or its (fuzzy)
truth function T(hj|X) ε [0,1]. Because T(hj|X) is constructed with some parameters, we
may also treat hj as a set of model parameters. We can also state that T(hj|X) is defined
by a normalized likelihood, i.e., T(hj|X) = k P(hj|X)/P(hj) = k P(X|hj)/P(X), where k is a
coefficient that makes the maximum of T(hj|X) be 1. The hj can also be regarded as a
fuzzy set, and T(hj|X) can be considered as a membership function of a fuzzy set
proposed by Zadeh [10].

In contrast to the popular likelihood method, the above method uses sub-models h1,
h2, …, hn instead of one model h or ϴ. The P(X|hj) is equivalent to P(X|yj, h) in the
popular likelihood method. A sample used to test yj is also a sub-sample or a condi-
tional sample. These changes will make the new method more flexible and more
compatible with the Shannon information theory.

1 Excel files demonstrating iterative process for tests, estimations, and mixture models can be
download from http://survivor99.com/lcg/CM-iteration.zip.
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A semantic channel is composed of a group of truth value functions or membership
functions: T(hj|X), j = 1, 2, …, n.

Similar to P(yj|X), T(hj|X) can also be used for Bayesian prediction to produce
likelihood function [4]:

PðXjhjÞ ¼ PðXÞTðhjjXÞ=TðhjÞ; TðhjÞ ¼
X
i

PðxiÞTðhjjxiÞ ð1Þ

where T(hj) is called the logical probability of yj. The author now know that this
formula was proposed by Thomas as early as 1981 [11]. We call this prediction the
semantic Bayesian prediction. If T(hj|X) / P(yj|X), then the semantic Bayesian pre-
diction is equivalent to the Bayesian prediction.

2.2 Semantic Information Measure and the Optimization of the Semantic
Channel

The semantic information conveyed by yj about xi is defined by normalized likelihood
as [3]:

Iðxi; hjÞ ¼ log
PðxijhjÞ
PðxiÞ ¼ log

TðhjjxiÞ
TðhjÞ ð2Þ

where the semantic Bayesian inference is used; it is assumed that prior likelihood
function P(X|ϴ) is equal to prior probability distribution P(X).

After averaging I(xi;hj), we obtain semantic (or generalized) KL information:

IðX; hjÞ ¼
X
i

PðxijyjÞ logPðxijhjÞPðxiÞ ¼
X
i

PðxijyjÞ log TðhjjxiÞTðhjÞ ð3Þ

The statistical probability P(xi|yj), i = 1, 2,…, on the left of “log” above, represents
a sampling distribution to test the hypothesis yj or model hj. Assume we choose yj
according to observed condition ZεC. If yj = f(Z|ZεCj), where Cj is a cub-set of C, then
P(X|yj) = P(X|Cj).

After averaging I(X;hj), we obtain semantic (or generalized) mutual information:

IðX;HÞ ¼
X
j

PðyjÞ
X
i

PðxijyjÞ logPðxijhjÞPðxiÞ

¼
X
j

X
i

PðxiÞPðyjjxiÞ log TðhjjxiÞTðhjÞ ¼ HðXÞ � HðXjHÞ

HðXjHÞ ¼ �
X
j

X
i

Pðxi; yjÞ logPðxijhjÞ

ð4Þ

where H(X) is the Shannon entropy of X, H(X|H) is the generalized posterior entropy of
X. Each of them has coding meaning [4, 5].
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Optimizing a semantic Channel is equivalent to optimizing a predictive model ϴ.
For given yj = f(Z|ZεCj), optimizing hj is equivalent to optimizing T(hj|X) by

T�ðhjjXÞ ¼ arg
TðhjjXÞ

max IðX; hjÞ ð5Þ

It is easy to prove that when P(X|hj) = P(X|yj), or

TðhjjXÞ
TðhjÞ ¼ PðyjjXÞ

PðyjÞ ; or TðhjjEÞ/PðhjjEÞ ð6Þ

I(X; hj) reaches the maximum. Set the maximum of T(hj|X) to 1. Then we can obtain

T�ðhjjXÞ ¼ PðyjjXÞ=Pðyjjx�j Þ ¼ ½P Xjyj
� �

=PðXÞ�=½P x�j jyj
� �

=P x�j
� �

� ð7Þ

In this equation, x�j makes Pðx�j jyjÞ=Pðx�j Þ be the maximum of P(X|yj)/P(X).

2.3 Relationship Between Semantic Mutual Information and Likelihood

Assume that the size of the sample used to test yj is Nj; the sample points come from
independent and identically distributed random variables. Among these points, the
number of xi is Nij. Assume that Nj is infinite, P(X|yj) = Nij/Nj. Hence, there is log
normalized likelihood:

log
Y
i

PðxijhjÞ
PðxiÞ

� �Nji

¼Nj

X
i

PðxijyjÞ logPðxijhjÞPðxiÞ ¼NjIðX; hjÞ ð8Þ

After averaging the above likelihood for different yj, j = 1, 2, …, n, we have the
average log normalized likelihood:

X
j

Nj

N
log

Y
i

PðxijhjÞ
PðxiÞ

� �Nji

¼
X
j

PðyjÞ
X
i

PðxijyjÞ logPðxijhjÞPðxiÞ
¼ IðX;HÞ¼HðXÞ � HðXjHÞ

ð9Þ

where N = N1 + N2 + ���+Nn. It shows that the ML criterion is equivalent to the
minimum generalized posterior entropy criterion and the Maximum Semantic Infor-
mation (MSI) criterion. When P(X|hj) = P(X|yj) (for all j), the semantic mutual infor-
mation I(X; ϴ) is equal to the Shannon mutual information I(X;Y), which is the special
case of I(X; ϴ).

2.4 The Matching Function R(G) of R and G

The R(G) function is an extension of the rate distortion function R(D) [7]. In the
R(D) function, R is the information rate, D is the upper limit of the distortion. The
R(D) function means that for given D, R = R(D) is the minimum of the Shannon
mutual information I(X;Y).

324 C. Lu

lcguang@foxmail.com



Let distortion function dij be replaced with Iij = I(xi; yj) = log[T(hj|xi)/T(hj)] = log
[P(xi|hj)/P(xi)], and let G be the lower limit of the semantic mutual information I(X; ϴ).
The information rate for given G and P(X) is defined as

RðGÞ ¼ min
PðY jXÞ:IðE;HÞ�G

IðX; YÞ ð10Þ

Following the derivation of R(D) [12], we can obtain [3]

GðsÞ ¼
X
i

X
j

IijPðxiÞPðyjÞ2sIijÞ=ki ¼
X
i

X
j

IijPðxiÞPðyjÞms
ij=ki

RðsÞ ¼ sGðsÞ �
X
i

PðxiÞ log ki
ð11Þ

wheremij = T(hj|xi)/T(hj) = P(xi|hj)/P(xi) is the normalized likelihood; ki ¼
P

j PðyjÞms
ij.

We may also use mij = P(xi| hj), which results in the same ms
ij=ki. The shape of an R

(G) function is a bowl-like curve as shown in Fig. 1.

The R(G) function is different from the R(D) function. For a given R, we have the
maximum value G+ and the minimum value G−, which is negative and means that to
bring a certain information loss |G| to enemies, we also need certain objective infor-
mation R.

In the rate distortion theory, dR/dD = s (s � 0). It is easy to prove that there is also
dR/dG = s, where s may be less or greater than 0. The increase of s will raise the
model’s prediction precision. If s changes from positive s1 to −s1, then R(−s1) = R(s1)
and G changes from G+ to G− (see Fig. 1).

When s = 1, ki = 1, and R = G, which means that the semantic channel matches
the Shannon channel and the semantic mutual information is equal to the Shannon
mutual information. When s = 0, R = 0 and G < 0. In Fig. 1, c = G(s = 0).

Fig. 1. The R(G) function of a binary source. When the slope s = 1, G = R, and information
efficiency G/R reaches its maximum 1.
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3 The CM Algorithm for Mixture Models

3.1 Explaining the Iterative Process by the R(G) Function

Assume a sampling distribution P(X) is produced by the conditional probability P*(X|Y)
being some function such as Gaussian distribution. We only know that the number of the
mixture components is n, without knowing P(Y). We need to solve P(Y) and model (or
parameters)H, so that the predicted probability distribution of X, denoted by Q(X), is as
close to the sampling distribution P(X) as possible, i.e. the relative entropy or
Kullback-Leibler divergence H(Q||P) is as small as possible. The Fig. 2 shows the
convergent processes of two examples.

We use P*(Y) and P*(X|Y) to denote the P(Y) and P(X|Y) that are used to produce
the sampling distribution P(X), and use P*(Y|X) and R* = I*(X;Y) to denote the cor-
responding Shannon channel and Shannon mutual information. When Q(X) = P(X),
there should be P(X|H) = P*(X|Y), and G* = R*.

For mixture models, when we let the Shannon channel match the semantic channel
(in Left-steps), we do not maximize I(X;H), but seek a P(X|H) that accords with P*(X|
Y) as possible (Left-step a in Fig. 2 is for this purpose), and a P(Y) that accords with P*
(Y) as possible (Left-step b in Fig. 2 is for this purpose). That means we seek a R that is
as close to R* as possible. Meanwhile, I(X;H) may decrease. However, in popular

Fig. 2. Illustrating the CM algorithm for mixture models. There are two iterative examples. One
is for R > R* and another is for R < R*. The Left-step a and Left-step b make R close to R*;
whereas the Right-step increases G so that (G, R) approaches line R = G.
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EM algorithms, the objective function, such as P(XN, Y|H), is required to keep
increasing without decreasing in both steps.

With CM algorithm, only after the optimal model is obtained, if we need to choose
Y according toX (for decision or classification), wemay seek the Shannon channelP(Y|X)
that conveys the MMI Rmax(Gmax) (see Left-step c in Fig. 2).

Assume that P(X) is produced by P*(X|Y) with the Gaussian distribution. Then the
likelihood functions are

P Xjhj
� � ¼ kj exp � X � cj

� �2
= 2dj
� �2h i

; j ¼ 1; 2; . . .; n

If n = 2, then parameters are c1, c2, d1, d2. In the beginning of the iteration, we may
set P(Y) = 1/n. We begin iterating from Left-step a.

Left-step a: Construct Shannon channel by

PðyjjXÞ ¼ PðyjÞPðXjhjÞ=QðXÞ
QðXÞ ¼ P

j
PðyjÞjðXjhjÞ ; j ¼ 1; 2; . . .; n ð12Þ

This formula has already been used in the EM algorithm [1]. It was also used in the
derivation process of the R(D) function [12]. Hence the semantic mutual information is

G ¼ IðX;HÞ ¼
X
i

X
j

PðxiÞPðxijhjÞQðxiÞ PðyjÞ logPðxijhjÞPðxiÞ ð13Þ

Left-step b: Use the following equation to obtain a new P(Y) repeatedly until the
iteration converges.

PðyjÞ (
X
i

PðxiÞPðyjjxiÞ ¼
X
i

PðxiÞ PðxijhjÞP
k
PðykÞPðxijhkÞPðyjÞ; j ¼ 1; 2; . . .; n ð14Þ

The convergent P(Y) is denoted by P+1(Y). This is because P(Y|X) from Eq. (12) is
an incompetent Shannon channel so that

P
i P(xi)P(yj|xi) 6¼ P(yj). The above iteration

makes P+1(Y) match P(X) and P(X|H) better. This iteration has been used by some
authors, such as in [13].

When n = 2, we should avoid choosing c1 and c2 so that both are larger or less than
the mean of X; otherwise P(y1) or P(y2) will be 0, and cannot be larger than 0 later.

If H (Q||P) is less than a small number, such as 0.001 bit, then end the iteration;
otherwise go to Right-step.

Right-step: Optimize the parameters in the likelihood function P(X|H) on the right of
the log in Eq. (13) to maximize I(X;H). Then go to Left-step a.
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3.2 Using Two Examples to Show the Iterative Processes

3.2.1 Example 1 for R < R*
In Table 1, there are real parameters that produce the sample distribution P(X) and
guessed parameters that are used to produce Q(X). The convergence process from the
starting (G, R) to (G*, R*) is shown by the iterative locus as R < R* in Fig. 2. The
convergence speed and changes of R and G are shown in Fig. 3. The iterative results
are shown in Table 1.

Analyses: In this iterative process, there are always R < R* and G < G*. After each
step, R and G increase a little bit so that G approaches G* gradually. This process
seams to tell us that each of Right-step, Left-step a, and Left-step b can increase G; and
hence maximizing G can minimize H(Q||P), which is our goal. Yet, it is wrong. The
Left a and Left b do not necessarily increase G. There are many counterexamples.
Fortunately, iterations for these counterexamples can still converge. Let us see Example
2 as a counterexample.

Table 1. Real and guessed model parameters and iterative results of Example 1 (R < R*)

Y Real parameters Start parameters
H(Q||P) = 0.410 bit

Parameters after
5 iterations
H(Q||P) = 0.00088 bit

c d P*(Y) c d P(Y) c d P(Y)

y1 35 8 0.7 30 15 0.5 35.4 8.3 0.72
y2 65 12 0.3 70 15 0.5 65.2 11.4 0.28

0

0.2

0.4

0.6

0.8

Rq-G G* G Rq R R-G

Fig. 3. The iterative process as R < R*. Rq is RQ in Eq. (15). H(Q||P) = RQ − G decreases in all
steps. G is monotonically increasing. R is also monotonically increasing except in the first
Left-step b. G and R gradually approach G* = R* so that H(Q||P) = RQ − G is close to 0.
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3.2.2 Example 2 for R > R*
Table 2 shows the parameters and iterative results for R > R*. The iterative process is
shown in Fig. 4.

Analyses: G is not monotonically increasing nor monotonically decreasing. It increases
in all Right steps and decreases in all Left steps. This example is a challenge to all
authors who prove that the standard EM algorithm or a variant EM algorithm converges.
If G is not monotonically increasing, it must be difficult or impossible to prove that logP
(XN, Y|H) or other likelihood is monotonically increasing or no-decreasing in all steps.
For example, in Example 2, Q* = −NH * (X, Y) = −6.031 N. After the first opti-
mization of parameters,Q = −6.011 N > Q*. If we continuously maximize Q,Q cannot
approach less Q*.

We also use some other true models P*(X|Y) and P*(Y) to test the CM algorithm. In
most cases, the number of iterations is close to 5. In rare cases where R and G are much
bigger than G*, such as R � G > 2G*, the iterative convergence is slow. In these cases
where logP(XN, Y|H) is also much bigger than logP*(XN,Y), the EM algorithm con-
fronts similar problem. Because of these cases, the convergence proof of the EM
algorithm is challenged.

Table 2. Real and guessed model parameters and iterative results for Example 2 (R > R*)

Y Real parameters Start parameters
H(Q||P) = 0.680 bit

Parameters after
5 iterations
H(Q||P) = 0.00092 bit

c d P*(Y) c d P(Y) c d P(Y)

y1 35 8 0.1 30 8 0.5 38 9.3 0.134
y2 65 12 0.9 70 8 0.5 65.8 11.5 0.886

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

start Lb R1 La Lb R2 La Lb R3 La Lb

G* G Rq R Rq-G R-G

Fig. 4. The iterative process as R > R*. Rq is RQ in Eq. (15). H(Q||P) = RQ − G decreases in all
steps. R is monotonically decreasing. G increases more or less in all Right-steps and decreases in
all Left-steps. G and R gradually approach G* = R* so that H(Q||P) = RQ − G is close to 0.
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3.3 The Convergence Proof of the CM Algorithm

Proof. To prove the CM algorithm converges, we need to prove that H(Q||P) is
decreasing or no-increasing in every step.

Consider the Right-step. Assume that the Shannon mutual information conveyed by
Y about Q(X) is RQ, and that about P(X) is R. Then we have

RQ ¼ IQðX; YÞ ¼
X
i

X
j

PðxiÞPðxijhjÞQðxiÞ PðyjÞ logPðxijhjÞQðxiÞ ð15Þ

R ¼ IðX; YÞ ¼
X
i

X
j

PðxiÞPðxijhjÞQðxiÞ PðyjÞ log PðyjjxiÞ
Pþ 1ðyjÞ

¼ RQ � HðY jjY þ 1Þ
HðY jjY þ 1Þ ¼

X
j

Pþ 1ðyjÞ log½Pþ 1ðyjÞ=PðyjÞ�
ð16Þ

According to Eqs. (13) and (15), we have

HðQjjPÞ ¼ RQ � G ¼ RþHðY jjY þ 1Þ � G ð17Þ

Because of this equation, we do not need Jensen’s inequality that the EM algorithm
needs.

In Right-steps, the Shannon channel and RQ does not change, G is maximized.
Therefore H(Q||P) is decreasing and its decrement is equal to the increment of G.

Consider Left-step a. After this step, Q(X) becomes Q+1(X) =
P

j P(yj)P
+1(X|hj).

Since Q+1(X) is produced by a better likelihood function and the same P(Y),
Q+1(X) should be closer to P(X) than Q(X), i.e. H(Q+1||P) < H(Q||P) (More strict
mathematical proof for this conclusion is needed).

Consider Left-step b. The iteration for P+1(Y) moves (G, R) to the R(G) function cure
ascertained by P(X) and P(X|hj) (for all j) that form a semantic channel. This conclusion
can be obtained from the derivation processes of R(D) function [12] and R(G) function
[3]. A similar iteration is used for P(Y|X) and P(Y) in deriving the R(D) function.
Because R(G) is the minimum R for given G, H(Q||P) = RQ − G = R − G becomes
less.

Because H(Q||P) becomes less after every step, the iteration converges. Q.E.D.

3.4 The Decision Function with the ML Criterion

After we obtain optimized P(X|H), we need to select Y (to make decision or classifi-
cation) according to X. The parameter s in R(G) function (see Eq. (11)) reminds us that
we may use the following Shannon channel
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PðyjjXÞ ¼ PðyjÞ½PðXjhjÞ�s=QðXÞ
QðXÞ ¼ P

j
PðyjÞ½PðXjhjÞ�s ; j ¼ 1; 2; . . .; n ð18Þ

which are fuzzy decision functions. When s ! + ∞, the fuzzy decision will become
crisp decision. Different from Maximum A prior (MAP) estimation, the above decision
function still persists in the ML criterion or MSI criterion. The Left-step c in Fig. 2
shows that (G, R) moves to (Gmax, Rmax) with s increasing.

3.5 Comparing the CM Algorithm and the EM Algorithm

In the EM algorithm [1, 14], the likelihood of a mixture model is expressed as logP
(XN|H) > L=Q − H. If we move P(Y) or P(Y|H) from Q into H, then Q will become
−NH(X|H) and H becomes −NRQ. If we add NH(X) to both sides of the inequality, we
will have H(Q||P) � RQ − G, which is similar to Eq. (17). It is easy to prove

Q ¼ NG� NPðXÞ � NHðYÞ ð19Þ

where H(Y) = −
P

j P
+1(yj)logP(yj) is a generalized entropy. We may think the M-step

merges the Left-step b and the Right-step of the CM algorithm into one step. In brief,

The E-step of EM ¼ the Left-step a of CM
The M-step of EM � the Left-step bþ the Right-step of CM

In the EM algorithm, if we first optimize P(Y) (not for maximum Q) and then
optimize P(X|Y, H), then the M-step will be equivalent to the CM algorithm.

There are also other improved EM algorithms [13, 15–17] with some advantages.
However, no one of these algorithms facilitates that R converges to R*, and
R − G converges to 0 as the CM algorithm.

The convergence reason of the CM algorithm is seemly clearer than the EM
algorithm (see the analyses in Example 2 for R > R*). According to [7, 15–17], the
CM algorithm is faster at least in most cases than the various EM algorithms.

The CM algorithm can also be used to achieve maximum mutual information and
maximum likelihood of tests and estimations. There are more detailed discussions
about the CM algorithm2.

4 Conclusions

Lu’s semantic information measure can combine the Shannon information theory and
likelihood method so that the semantic mutual information is the average log normal-
ized likelihood. By letting the semantic channel and Shannon channel mutually match
and iterate, we can achieve the mixture model with minimum relative entropy. The
iterative convergence can be intuitively explained and proved by the R(G) function.

2 https://arxiv.org/abs/1706.07918.
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Two iterative examples and mathematical analyses show that the CM algorithm has
higher efficiency at least in most cases and clearer convergence reasons than the popular
EM algorithm.

Acknowledgment. The author thanks Professor Peizhuang Wang for his long term supports and
encouragements.
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