A theoretical Framework for Qualitative Analysis of Largescale Complex Systems

Jianjun Zhu Department of Intelligence Science Peking University

Contents

2

3

1 Introduction

Algebraic System on Interval

Linear Algebraic System

2007-10-16

Introduction

Methods of data handling

- s Quantitative Analysis
- 🤜 Qualitative Analysis

Quantitative Analysis

- Small-scale Simple System
- Conventional Analysis method
- Qualitative Analysis
 - Large-scale Complex System
 - Unconventional Analysis method

Quantitative Analysis

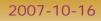
Advantages

- Description of Data in detail
- Precise local analysis
- Accurate data prediction
- Disadvantages
 - Suitable for small-scale simple system
 - Can not make us cognize things as whole
 - Can not make relations among things clear

Qualitative Analysis

Advantages

- Suitable for large-scale complex system
- ✓ Make us cognize things as whole
- Make relation among things clear
- Simple and convenient operation
- Difficulty
 - ✓ Without analysis tool
 - Without theoretical architecture
 - Change of thinking mode


Algebraic System on Interval

Definitions of Basic Concepts

Relations Between intervals

Operations on interval set

Algebraic System On Interval Set

2

3

4

Definitions of Basic Concepts

Interval set S

- ✓ Basis of algebraic system
- Consists of intervals
- some field 😽
- Hierarchical structure
- Unitary Operations
 - Convert an interval to other interval
 - ✓ Serve for binary operations
 - Applied to evaluate polynomial on interval

Interval Set

Conception

- Severy operation is defined on interval set
- Algebraic system consists of interval set and operations

Contains all intervals which are discussed
Consists of interval subsets hierarchically
Covers all elements of some filed

Denotation

 \checkmark Denoted by S

Interval Subset

- Conception

 - Each consists of some intervals which have same properties
 - A interval subset may contain other interval subset
- Character
 - Some interval subsets correspond with one or some scales
 - Reflect the change of visual angle
- Utilities
 - Reduce range of research
 - Locate research at proper scale

Interval

Conception

- Element of Interval set
- Subscribes a range covering many elements of some field
- Forms bottom layer of hierarchical structure of interval system

Denotation

- Senoted by quaternary vector
 - 🔀 level component
 - > location component
 - 🔀 length component
 - 🔀 index component

Type of Interval

- Primitive Interval
 - Sefinition: index component of interval is zero
 - _≪ Has two types
 - 🔀 Unit interval
 - Definition: length component of interval is 1
 - Character: the smallest interval on its level
 - 🔀 Composite interval
 - Definition: length component of interval is greater than 1
 - Character: contain some unit intervals
- Non-primitive Interval
 - Solution: Index component of interval is not zero
 - Derived from result of operation on primitive intervals
 - Represents the union of two primitive intervals

Relations Between intervals

- Relation of equivalency
 - Sequivalence: an interval is equal to other interval
 - No-more-than: an interval is no more than other interval
 - Less-than: an interval is less than other interval
- Relation of order
 - Intersecting: an interval intersects other interval
 - Non-intersecting: an interval do not intersect other interval

 - Containing: an interval contains other interval
 - Sordering-on: an interval borders on other interval

Unitary Operations(1)

- Positive-direction
 - Definition: adjust direction of interval to positive direction
 - Character: the result is an interval whose length component is positive integer
 - Interval set S is closed under this operation
- Absolute-value
 - Solution: Assign zero to index component of interval
 - - make a non-primitive interval be a primitive interval
 - × One of operations that change type of interval
 - \backsim Interval set S is closed under this operation

Unitary Operations(2)

- Complete-absolute
 - Sefinition: expand an interval to other interval whose index component is zero
 - - Convert a non-primitive interval into a primitive interval
 - × Another operation that changes type of interval
- Jump-level
 - Solution: Move interval from its level to other level
 - Character: convert an interval to other interval that is equal to this interval but whose level component is distinct
 - $\leq S$ is closed under this operation

Binary Operations(1)

- Union on interval
 - Solution: Unite two intervals to produce a bigger one
 - - the result is an interval whose index component is zero and length component is the sum of length components of two operands
 - ₭ An auxiliary operation
 - - \times Closed: S equipped with operation union is closed
 - \times Associative: S is associative under operation union
 - \times Commutative: S is commutative under this operation
- System consisting of S and operation union

 - ✓ Be a commutative semi-group: since it is commutative

Binary Operations(2)

- Addition on interval
 - 😽 Character
 - ₭ Be similar to conventional addition on number
 - \times Defined in interval set S
 - ✗ Operand is interval
 - 🤜 Utility
 - X One of important operations for constructing linear algebraic system
 - Y One of basic operations for fitting complex system
- Multiplication on interval
 - 🔸 Character
 - ₭ Be similar to conventional multiplication on number
 - \times Defined in interval set S
 - ✗ operand is interval
 - - X The other important operation for constructing linear algebraic system
 - ₭ The other basic operation for fitting complex system

Algebraic System on S

- Conception
 - s Components
 - 🔀 Interval set S
 - \times All operations defined on S
 - Unitary Operations: defined as before
 - Binary operations: defined as before
 - ₅ Theoretical basis
 - \ge Each Operand of operation is interval of S
 - ₭ Each operation is well-defined
 - $\times S$ is closed under each operation
- Utilities
 - Constructs simple system to fit complex system
 - Supports conversion of system between different scales

Linear Algebraic System

Linear Algebraic System on Interval Set

Additional on Interval

Multiplication on Interval

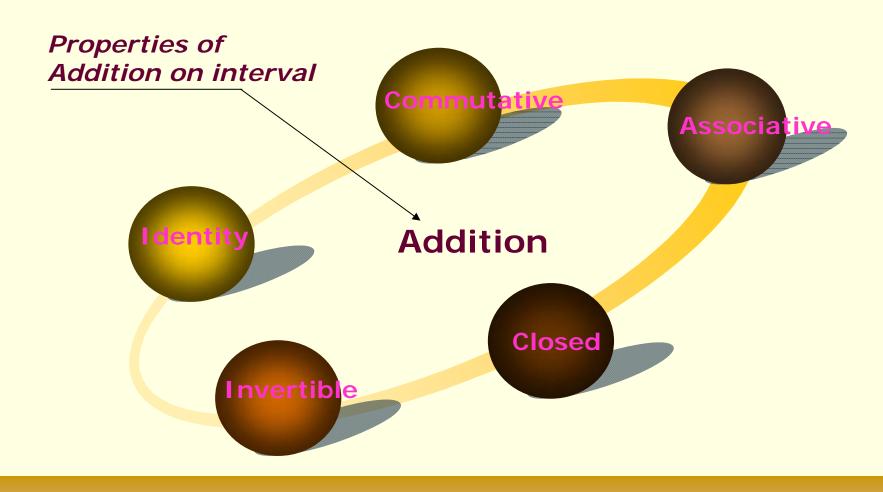
2007-10-16

1

2

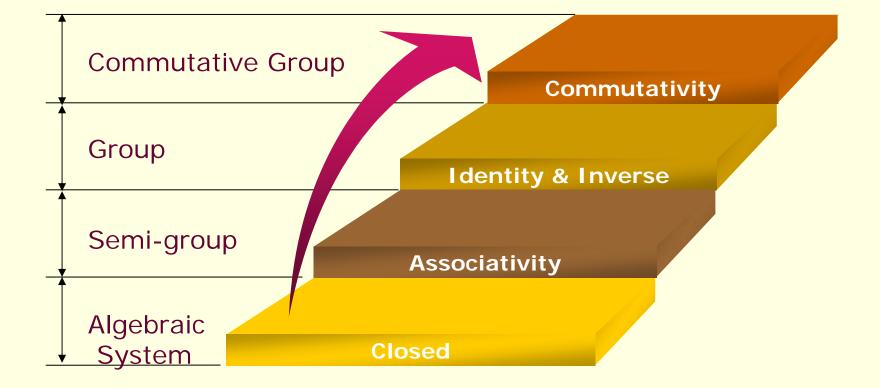
3

Linear Algebraic System on S


- Conception
 - ₅ Components
 - \times Interval set S
 - \ge Operations on S: addition-interval, multiplication-interval
 - 🔸 Character
 - \ge Subsystem of algebraic system on S defined as before
 - Has particular relations between operation addition and operation multiplication
- Utilities
 - Forms an operational architecture of large-scale
 - Constructs a simple linear system to describe complex system

Addition on interval

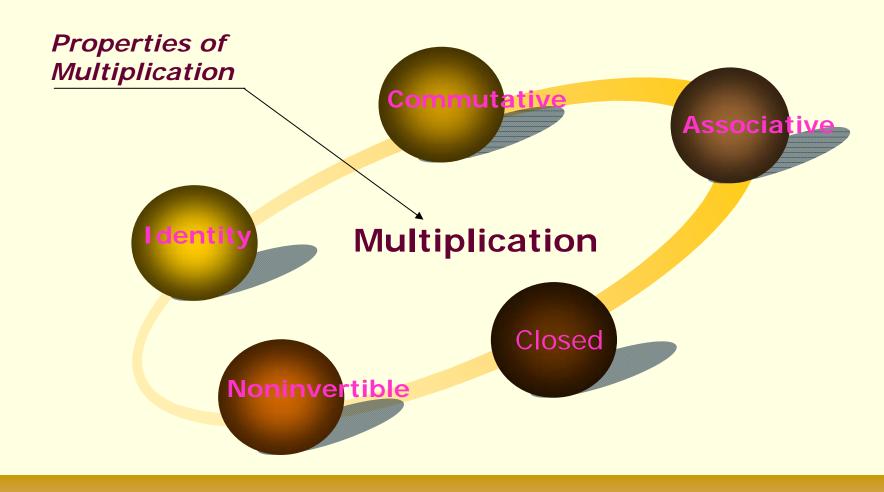
- Conception
 - Definition: add a interval to other interval and produce a new interval
 - Be a binary operation
 - Abbreviated to addition-interval
- Properties:
 - \backsim Closed: S is closed under addition
 - Associative: S satisfies associative law under addition


 - s Identity:
 - \times system consisting of S and operation addition has identity
 - 🔀 Called zero-interval
 - Inverse:
 - \varkappa system consisting of S and operation addition has inverse for each element
 - Inverse of some interval equals zero-interval subtracts this interval

Properties of Addition

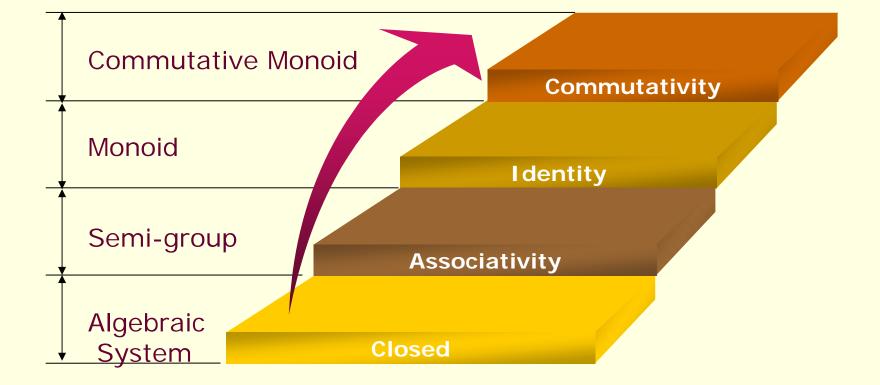
2007-10-16

Group with Addition



Multiplication on interval

- Conception
 - Definition: multiply a interval by other interval and produce a new interval
 - Be a binary operation as addition
 - Abbreviated to multiplication-interval
- Properties:


 - Sommutative: S is commutative under this operation
 - ✓ Identity:
 - \times System consisting of S and operation multiplication has identity
 - ₭ Called one-interval
 - 🔸 Noninvertible
 - \times System consisting of S and operation addition has not inverse for some element

Properties of Multiplication

2007-10-16

Monoid with Multiplication

Ring on S

- Conception
 - Solution System consisting of interval set S and operations of addition and multiplication
 - s Components
 - \varkappa Interval set S
 - \times Operations on S: addition-interval, multiplication-interval
- Properties
 - Inner algebraic system
 - \varkappa Commutative Group with addition : Consisting of S and operation addition
 - \times Commutative semi-Group of multiplication : Consisting of S and operation multiplication
 - - X Operation addition is distributive by operation multiplication
 - ₭ Make result of operation on intervals unambiguous

Thank You !

